Effects of Various Antifouling Coatings and Fouling on Marine Sonar Performance

Bradley Donnelly, Ian Bedwell, Jim Dimas, Andrew Scardino, Youhong Tang, Karl Sammut

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
34 Downloads (Pure)


There is a rising imperative to increase the operational availability of maritime vessels by extending the time between full docking cycles. To achieve operational efficacy, maritime vessels must remain clear of biological growth. Such growth can cause significant increases in frictional drag, thereby reducing speed, range and fuel efficiency and decreasing the sensitivity of acoustic sensors. The impact that various stages of fouling have on acoustic equipment is unclear. It is also unclear to what extent antifouling techniques interfere with the transmission of acoustic signals. In this study, to examine this effect, neoprene samples were coated with three antifouling coatings, namely, Intersmooth 7460HS, HempaGuard X7 and Hempasil X3. Other neoprene samples were left uncoated but were imbedded with the biocide, 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) during the mixing and curing process. Uncoated nitrile samples that had varying levels of fouling from immersion in Port Phillip Bay, Australia, for 92, 156 and 239 days were also extracted. The acoustic properties of these samples were measured using an acoustic insertion loss test and compared to uncoated neoprene or nitrile to ascertain the acoustic effects of the applications of antifouling coatings as well as the fouling growth itself. A T-peel test was performed on all coated samples in an attempt to understand the adhesive properties of the coatings when applied to neoprene. It was found that the application of antifouling coatings had little effect on the transmission characteristics of the neoprene with approximately 1 dB loss. The embedment of DCOIT, however, has a chance of causing aeration in the neoprene, which can heavily hamper transmission. An assessment of the effect of the fouling growth found that light and medium fouling levels produced little transmission loss, whereas more extreme fouling lead to a 9 dB transmission loss. The adhesion properties of the coatings were investigated but not fully ascertained as tensile yielding occurred before peeling. However, various failure modes are presented and discussed in this study.

Original languageEnglish
Article number663
Number of pages14
Issue number4
Publication statusPublished - Apr 2019


  • Acoustic sensors
  • Antifouling coatings
  • Fouling
  • Transmission loss


Dive into the research topics of 'Effects of Various Antifouling Coatings and Fouling on Marine Sonar Performance'. Together they form a unique fingerprint.

Cite this