TY - JOUR
T1 - Elastic scattering and vibrational excitation for electron impact on para-benzoquinone
AU - Jones, Darryl
AU - Blanco, Francisco
AU - Garcia, Gustavo
AU - da Costa, R
AU - Kossoski, F.
AU - Varella, Marcio
AU - Bettega, Marcio
AU - Lima, Marco
AU - White, R. D.
AU - Brunger, Michael
PY - 2017/12/28
Y1 - 2017/12/28
N2 - We report on theoretical elastic and experimental vibrational-excitation differential cross sections (DCSs) for electron scattering from para-benzoquinone (C6H4O2), in the intermediate energy range 15-50 eV. The calculations were conducted with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that also now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at the static-exchange-plus-polarisation (Nopench-SEP) level was used to calculate the scattering amplitudes using a channel coupling scheme that ranges from 1ch-SE up to the 89ch-SEP level of approximation. We found that in going from the 38ch-SEP to the 89ch-SEP, at all energies considered here, the elastic DCSs did not change significantly in terms of both their shapes and magnitudes. This is a good indication that our SMCPP 89ch-SEP elastic DCSs are converged with respect to the multichannel coupling effect for the investigated intermediate energies. While agreement between our IAM-SCAR+I and SMCPP 89ch-SEP computations improves as the incident electron energy increases from 15 eV, overall the level of accord is only marginal. This is particularly true at middle scattering angles, suggesting that our SCAR and interference corrections are failing somewhat for this molecule below 50 eV. We also report experimental DCS results, using a crossed-beam apparatus, for excitation of some of the unresolved ("hybrid") vibrational quanta (bands I-III) of para-benzoquinone. Those data were derived from electron energy loss spectra that were measured over a scattered electron angular range of 10°-90° and put on an absolute scale using our elastic SMCPP 89ch-SEP DCS results. The energy resolution of our measurements was ∼80 meV, which is why, at least in part, the observed vibrational features were only partially resolved. To the best of our knowledge, there are no other experimental or theoretical vibrational excitation results against which we might compare the present measurements.
AB - We report on theoretical elastic and experimental vibrational-excitation differential cross sections (DCSs) for electron scattering from para-benzoquinone (C6H4O2), in the intermediate energy range 15-50 eV. The calculations were conducted with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that also now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at the static-exchange-plus-polarisation (Nopench-SEP) level was used to calculate the scattering amplitudes using a channel coupling scheme that ranges from 1ch-SE up to the 89ch-SEP level of approximation. We found that in going from the 38ch-SEP to the 89ch-SEP, at all energies considered here, the elastic DCSs did not change significantly in terms of both their shapes and magnitudes. This is a good indication that our SMCPP 89ch-SEP elastic DCSs are converged with respect to the multichannel coupling effect for the investigated intermediate energies. While agreement between our IAM-SCAR+I and SMCPP 89ch-SEP computations improves as the incident electron energy increases from 15 eV, overall the level of accord is only marginal. This is particularly true at middle scattering angles, suggesting that our SCAR and interference corrections are failing somewhat for this molecule below 50 eV. We also report experimental DCS results, using a crossed-beam apparatus, for excitation of some of the unresolved ("hybrid") vibrational quanta (bands I-III) of para-benzoquinone. Those data were derived from electron energy loss spectra that were measured over a scattered electron angular range of 10°-90° and put on an absolute scale using our elastic SMCPP 89ch-SEP DCS results. The energy resolution of our measurements was ∼80 meV, which is why, at least in part, the observed vibrational features were only partially resolved. To the best of our knowledge, there are no other experimental or theoretical vibrational excitation results against which we might compare the present measurements.
UR - http://www.scopus.com/inward/record.url?scp=85040126543&partnerID=8YFLogxK
U2 - 10.1063/1.5010831
DO - 10.1063/1.5010831
M3 - Article
SN - 0021-9606
VL - 147
SP - Art: 244304
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 24
M1 - 244304
ER -