Electrostatically Tuning the Photodissociation of the Irgacure 2959 Photoinitiator in the Gas Phase by Cation Binding

Samuel J. P. Marlton, Benjamin I. McKinnon, Nicholas S. Hill, Michelle L. Coote, Adam J. Trevitt

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


The low-lying electronic states of Irgacure 2959, a Norrish-type I photoinitiator, complexed with a single metal cation are investigated in the gas phase by photodissociation action spectroscopy. Analysis of the band shifts using quantum chemical calculations (TD-DFT and SCS-CC2) reveals the underlying influence of the charge on the key electronic energy levels. Since the cations (H+, Li+, Na+, K+, Zn2+, Ca2+, and Mg2+) bind at varying distances, the magnitude of the electric field at the center of the chromophore due to the cation is altered, and this shifts the electronic states by different amounts. Photodissociation action spectra of cation-Irg complexes show that absorption transitions to the first 1ππ∗ state are red-shifted with a magnitude proportional to the electric field strength (with red shifts >1 eV), and in most cases, the cation is essentially acting as a point charge. Calculations show that a neighboring 3nπ∗ state, a key state for the α-cleavage pathway, is destabilized (blue-shifted) by the orientated electric field. As such, if the 1ππ*-3nπ∗ energy gap is reduced, increased intersystem crossing rates are expected, resulting in higher yields of the desired radical photoproducts, and this is controlled by the orientated electric field arising from the cation.

Original languageEnglish
Pages (from-to)2331-2339
Number of pages9
JournalJournal of The American Chemical Society
Issue number5
Publication statusPublished - 10 Feb 2021
Externally publishedYes

Bibliographical note

Funding Information:
Funding from Australian Research Council grants (AJT: DP200100065 and LP180100550. MLC: CE140100012 and FL170100041) is gratefully acknowledged. This work was also supported by computational resources provided by the Australian Government through the National Computation Infrastructure under the National Computational Merit Allocation Scheme. S.J.P.M., B.I.M., acknowledge support from Australian Government Research Training Program Scholarships

Publisher Copyright:
© 2021 American Chemical Society.


  • Electrostatic
  • Photodissociation
  • Irgacure 2959
  • Photoinitiator
  • metal
  • spectroscopy


Dive into the research topics of 'Electrostatically Tuning the Photodissociation of the Irgacure 2959 Photoinitiator in the Gas Phase by Cation Binding'. Together they form a unique fingerprint.

Cite this