Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption

Jeremiah J. Minich, Megan M. Morris, Matt Brown, Michael Doane, Matthew S. Edwards, Todd P. Michael, Elizabeth A. Dinsdale

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 ‘future conditions’, with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodo-bacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production.

Original languageEnglish
Article numbere0192772
Number of pages23
JournalPLoS One
Volume13
Issue number2
DOIs
Publication statusPublished - 23 Feb 2018
Externally publishedYes

Bibliographical note

Copyright: © 2018 Minich et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [CC BY}, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Keywords

  • seaweed
  • microbiome
  • water columns
  • climate change
  • mesocosms
  • carbon dioxide
  • algae
  • fronds

Fingerprint Dive into the research topics of 'Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption'. Together they form a unique fingerprint.

  • Cite this

    Minich, J. J., Morris, M. M., Brown, M., Doane, M., Edwards, M. S., Michael, T. P., & Dinsdale, E. A. (2018). Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS One, 13(2), [e0192772]. https://doi.org/10.1371/journal.pone.0192772