TY - JOUR
T1 - ELOVL5 is a critical and targetable fatty acid elongase in prostate cancer
AU - Centenera, Margaret M.
AU - Scott, Julia S.
AU - Machiels, Jelle
AU - Nassar, Zeyad D.
AU - Miller, Deanna C.
AU - Zinonos, Irene
AU - Dehairs, Jonas
AU - Burvenich, Ingrid J.G.
AU - Zadra, Giorgia
AU - Chetta, Paolo M.
AU - Bango, Clyde
AU - Evergren, Emma
AU - Ryan, Natalie K.
AU - Gillis, Joanna L.
AU - Mah, Chui Yan
AU - Tieu, Terence
AU - Hanson, Adrienne R.
AU - Carelli, Ryan
AU - Bloch, Katarzyna
AU - Panagopoulos, Vasilios
AU - Waelkens, Etienne
AU - Derua, Rita
AU - Williams, Elizabeth D.
AU - Evdokiou, Andreas
AU - Cifuentes-Rius, Anna
AU - Voelcker, Nicolas H.
AU - Mills, Ian G.
AU - Tilley, Wayne D.
AU - Scott, Andrew M.
AU - Loda, Massimo
AU - Selth, Luke A.
AU - Swinnen, Johannes V.
AU - Butler, Lisa M.
PY - 2021/4
Y1 - 2021/4
N2 - The androgen receptor (AR) is the key oncogenic driver of prostate cancer, and despite implementation of novel AR targeting therapies, outcomes for metastatic disease remain dismal. There is an urgent need to better understand androgen-regulated cellular processes to more effectively target the AR dependence of prostate cancer cells through new therapeutic vulnerabilities. Transcriptomic studies have consistently identified lipid metabolism as a hallmark of enhanced AR signaling in prostate cancer, yet the relationship between AR and the lipidome remains undefined. Using mass spectrometry-based lipidomics, this study reveals increased fatty acyl chain length in phospholipids from prostate cancer cells and patient-derived explants as one of the most striking androgen-regulated changes to lipid metabolism. Potent and direct AR-mediated induction of ELOVL fatty acid elongase 5 (ELOVL5), an enzyme that catalyzes fatty acid elongation, was demonstrated in prostate cancer cells, xenografts, and clinical tumors. Assessment of mRNA and protein in large-scale data sets revealed ELOVL5 as the predominant ELOVL expressed and upregulated in prostate cancer compared with nonmalignant prostate. ELOVL5 depletion markedly altered mitochondrial morphology and function, leading to excess generation of reactive oxygen species and resulting in suppression of prostate cancer cell proliferation, 3D growth, and in vivo tumor growth and metastasis. Supplementation with the monounsaturated fatty acid cis-vaccenic acid, a direct product of ELOVL5 elongation, reversed the oxidative stress and associated cell proliferation and migration effects of ELOVL5 knockdown. Collectively, these results identify lipid elongation as a protumorigenic metabolic pathway in prostate cancer that is androgen-regulated, critical for metastasis, and targetable via ELOVL5.
AB - The androgen receptor (AR) is the key oncogenic driver of prostate cancer, and despite implementation of novel AR targeting therapies, outcomes for metastatic disease remain dismal. There is an urgent need to better understand androgen-regulated cellular processes to more effectively target the AR dependence of prostate cancer cells through new therapeutic vulnerabilities. Transcriptomic studies have consistently identified lipid metabolism as a hallmark of enhanced AR signaling in prostate cancer, yet the relationship between AR and the lipidome remains undefined. Using mass spectrometry-based lipidomics, this study reveals increased fatty acyl chain length in phospholipids from prostate cancer cells and patient-derived explants as one of the most striking androgen-regulated changes to lipid metabolism. Potent and direct AR-mediated induction of ELOVL fatty acid elongase 5 (ELOVL5), an enzyme that catalyzes fatty acid elongation, was demonstrated in prostate cancer cells, xenografts, and clinical tumors. Assessment of mRNA and protein in large-scale data sets revealed ELOVL5 as the predominant ELOVL expressed and upregulated in prostate cancer compared with nonmalignant prostate. ELOVL5 depletion markedly altered mitochondrial morphology and function, leading to excess generation of reactive oxygen species and resulting in suppression of prostate cancer cell proliferation, 3D growth, and in vivo tumor growth and metastasis. Supplementation with the monounsaturated fatty acid cis-vaccenic acid, a direct product of ELOVL5 elongation, reversed the oxidative stress and associated cell proliferation and migration effects of ELOVL5 knockdown. Collectively, these results identify lipid elongation as a protumorigenic metabolic pathway in prostate cancer that is androgen-regulated, critical for metastasis, and targetable via ELOVL5.
KW - ELOVL5
KW - androgen receptor (AR)
KW - androgen-regulated cellular processes
KW - prostate cancer
UR - http://www.scopus.com/inward/record.url?scp=85104869402&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/NHMRC/1121057
U2 - 10.1158/0008-5472.CAN-20-2511
DO - 10.1158/0008-5472.CAN-20-2511
M3 - Article
AN - SCOPUS:85104869402
SN - 0008-5472
VL - 81
SP - 1704
EP - 1718
JO - Cancer Research
JF - Cancer Research
IS - 7
ER -