TY - JOUR
T1 - Enhancement of Growth and Lipid Production in Microalgae Using Aggregation-Induced Emission Based Luminescent Material for Sustainable Food and Fuel
AU - Rakhi, Sharmin Ferdewsi
AU - Reza, Abdul Hakim Mohammad Mohsinul
AU - Wang, Jianzhong
AU - Tang, Youhong
AU - Qin, Jianguang
PY - 2025/1/2
Y1 - 2025/1/2
N2 - Aggregation-Induced Emission (AIE) based nanomaterials are progressively gaining momentum owing to their evolvement into an interdisciplinary field ranging from biomass and biomolecule yield to image-guided photodynamic therapy. This study focuses on a novel strategy to enhance growth, lipid accumulation, and in vivo fluorescence visualisation in green microalgae Chlamydomonas reinhardtii using AIE nanoparticles to quantify radical changes. The absorption of AIE photosensitiser (PS), TTMN (C26H17N3S[M]+) was recorded from 420 to 570 nm with a peak at 500 nm, and the emission ranged from 550 to 800 nm with a peak at 650 nm. As a reactive oxygen species (ROS) molecule, H2O2 generation of TTMN in C. reinhardtii cells was detected with AIE nanoprobes TPE-BO (C38H42B2O4). H2O2 accumulation increased with the increase of TTMN concentrations. The maximum growth (2.1×107 cell/mL) was observed at 10 μM TTMN-exposed C. reinhardtii cells. Significant lipid accumulation was found in both 10 and 15 μM TTMN-treated cells. For lipid visualisation, an AIE nanoprobe, 2-DPAN (C24H18N2O) was used, and superior fluorescence was determined and compared with the traditional BODIPY dye. Cytotoxicity analysis of 10 μM TTMN on the HaCat cell line with 86.2 % cell viability revealed its high biocompatibility on living cells. This AIE-based nanotechnology provides a novel approach for microalgae-derived sustainable biomass and eco-friendly biofuel production.
AB - Aggregation-Induced Emission (AIE) based nanomaterials are progressively gaining momentum owing to their evolvement into an interdisciplinary field ranging from biomass and biomolecule yield to image-guided photodynamic therapy. This study focuses on a novel strategy to enhance growth, lipid accumulation, and in vivo fluorescence visualisation in green microalgae Chlamydomonas reinhardtii using AIE nanoparticles to quantify radical changes. The absorption of AIE photosensitiser (PS), TTMN (C26H17N3S[M]+) was recorded from 420 to 570 nm with a peak at 500 nm, and the emission ranged from 550 to 800 nm with a peak at 650 nm. As a reactive oxygen species (ROS) molecule, H2O2 generation of TTMN in C. reinhardtii cells was detected with AIE nanoprobes TPE-BO (C38H42B2O4). H2O2 accumulation increased with the increase of TTMN concentrations. The maximum growth (2.1×107 cell/mL) was observed at 10 μM TTMN-exposed C. reinhardtii cells. Significant lipid accumulation was found in both 10 and 15 μM TTMN-treated cells. For lipid visualisation, an AIE nanoprobe, 2-DPAN (C24H18N2O) was used, and superior fluorescence was determined and compared with the traditional BODIPY dye. Cytotoxicity analysis of 10 μM TTMN on the HaCat cell line with 86.2 % cell viability revealed its high biocompatibility on living cells. This AIE-based nanotechnology provides a novel approach for microalgae-derived sustainable biomass and eco-friendly biofuel production.
KW - Aggregation-Induced Emission
KW - Lipid
KW - Photosensitiser
KW - Photosynthesis
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=85208399850&partnerID=8YFLogxK
U2 - 10.1002/asia.202401077
DO - 10.1002/asia.202401077
M3 - Article
AN - SCOPUS:85208399850
SN - 1861-4728
VL - 20
JO - Chemistry - An Asian Journal
JF - Chemistry - An Asian Journal
IS - 1
M1 - e202401077
ER -