TY - JOUR
T1 - Enzymatically-Modified Isoquercitrin Improves Endothelial Function in Volunteers at Risk of Cardiovascular Disease
AU - Bondonno, Nicola P.
AU - Bondonno, Catherine P.
AU - Ward, Natalie C.
AU - Woodman, Richard J.
AU - Hodgson, Jonathan M.
AU - Croft, Kevin D.
PY - 2020/1/28
Y1 - 2020/1/28
N2 - A higher intake of food rich in flavonoids such as quercetin can reduce the risk of CVD. Enzymatically modified isoquercitrin (EMIQ®) has a bioavailability 17-fold higher than quercetin aglycone and has shown potential CVD moderating effects in animal studies. The present study aimed to determine whether acute ingestion of EMIQ® improves endothelial function, blood pressure (BP) and cognitive function in human volunteers at risk of CVD. Twenty-five participants (twelve males and thirteen females) with at least one CVD risk factor completed this randomised, controlled, crossover study. In a random order, participants were given EMIQ® (2 mg aglycone equivalent)/kg body weight or placebo alongside a standard breakfast meal. Endothelial function, assessed by flow-mediated dilatation (FMD) of the brachial artery was measured before and 1·5 h after intervention. BP, arterial stiffness, cognitive function, BP during cognitive stress and measures of quercetin metabolites, oxidative stress and markers of nitric oxide (NO) production were assessed post-intervention. After adjustment for pre-treatment measurements and treatment order, EMIQ® treatment resulted in a significantly higher FMD response compared with the placebo (1·80 (95 % CI 0·23, 3·37) %; P = 0·025). Plasma concentrations of quercetin metabolites were significantly higher (P < 0·001) after EMIQ® treatment compared with the placebo. No changes in BP, arterial stiffness, cognitive function or biochemical parameters were observed. In this human intervention study, the acute administration of EMIQ® significantly increased circulating quercetin metabolites and improved endothelial function. Further clinical trials are required to assess whether health benefits are associated with long-term EMIQ® consumption.
AB - A higher intake of food rich in flavonoids such as quercetin can reduce the risk of CVD. Enzymatically modified isoquercitrin (EMIQ®) has a bioavailability 17-fold higher than quercetin aglycone and has shown potential CVD moderating effects in animal studies. The present study aimed to determine whether acute ingestion of EMIQ® improves endothelial function, blood pressure (BP) and cognitive function in human volunteers at risk of CVD. Twenty-five participants (twelve males and thirteen females) with at least one CVD risk factor completed this randomised, controlled, crossover study. In a random order, participants were given EMIQ® (2 mg aglycone equivalent)/kg body weight or placebo alongside a standard breakfast meal. Endothelial function, assessed by flow-mediated dilatation (FMD) of the brachial artery was measured before and 1·5 h after intervention. BP, arterial stiffness, cognitive function, BP during cognitive stress and measures of quercetin metabolites, oxidative stress and markers of nitric oxide (NO) production were assessed post-intervention. After adjustment for pre-treatment measurements and treatment order, EMIQ® treatment resulted in a significantly higher FMD response compared with the placebo (1·80 (95 % CI 0·23, 3·37) %; P = 0·025). Plasma concentrations of quercetin metabolites were significantly higher (P < 0·001) after EMIQ® treatment compared with the placebo. No changes in BP, arterial stiffness, cognitive function or biochemical parameters were observed. In this human intervention study, the acute administration of EMIQ® significantly increased circulating quercetin metabolites and improved endothelial function. Further clinical trials are required to assess whether health benefits are associated with long-term EMIQ® consumption.
KW - blood pressure
KW - cognitive function
KW - endothelial function
KW - Enzymatically modified isoquercitrin
KW - Blood pressure
KW - Endothelial function
KW - Cognitive function
UR - http://www.scopus.com/inward/record.url?scp=85071128501&partnerID=8YFLogxK
U2 - 10.1017/S0007114519002137
DO - 10.1017/S0007114519002137
M3 - Article
AN - SCOPUS:85071128501
SN - 0007-1145
VL - 123
SP - 182
EP - 189
JO - British Journal of Nutrition
JF - British Journal of Nutrition
IS - 2
ER -