TY - JOUR
T1 - Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system
AU - Zounemat-Kermani, Mohammad
AU - Beheshti, Ali Asghar
AU - Ataie-Ashtiani, Behzad
AU - Sabbagh-Yazdi, Saeed Reza
PY - 2009/3/1
Y1 - 2009/3/1
N2 - The process of local scour around bridge piers is fundamentally complex due to the three-dimensional flow patterns interacting with bed materials. For geotechnical and economical reasons, multiple pile bridge piers have become more and more popular in bridge design. Although many studies have been carried out to develop relationships for the maximum scour depth at pile groups under clear-water scour condition, existing methods do not always produce reasonable results for scour predictions. It is partly due to the complexity of the phenomenon involved and partly because of limitations of the traditional analytical tool of statistical regression. This paper addresses the latter part and presents an alternative to the regression in the form of artificial neural networks, ANNs, and adaptive neuro-fuzzy inference system, ANFIS. Two ANNs model, feed forward back propagation, FFBP, and radial basis function, RBF, were utilized to predict the depth of the scour hole. Two combinations of input data were used for network training; the first input combination contains six-dimensional variables, which are flow depth, mean velocity, critical flow velocity, grain mean diameter, pile diameter, distance between the piles (gap), besides the number of piles normal to the flow and the number of piles in-line with flow, while the second combination contains seven non-dimensional parameters which is a composition of dimensional parameters. The training and testing experimental data on local scour at pile groups are selected from several precious references. Networks' results have been compared with the results of empirical methods that are already considered in this study. Numerical tests indicate that FFBP-NN model provides a better prediction than the other models. Also a sensitivity analysis showed that the pile diameter in dimensional variables and ratio of pile spacing to pile diameter in non-dimensional parameters are the most significant parameters on scour depth.
AB - The process of local scour around bridge piers is fundamentally complex due to the three-dimensional flow patterns interacting with bed materials. For geotechnical and economical reasons, multiple pile bridge piers have become more and more popular in bridge design. Although many studies have been carried out to develop relationships for the maximum scour depth at pile groups under clear-water scour condition, existing methods do not always produce reasonable results for scour predictions. It is partly due to the complexity of the phenomenon involved and partly because of limitations of the traditional analytical tool of statistical regression. This paper addresses the latter part and presents an alternative to the regression in the form of artificial neural networks, ANNs, and adaptive neuro-fuzzy inference system, ANFIS. Two ANNs model, feed forward back propagation, FFBP, and radial basis function, RBF, were utilized to predict the depth of the scour hole. Two combinations of input data were used for network training; the first input combination contains six-dimensional variables, which are flow depth, mean velocity, critical flow velocity, grain mean diameter, pile diameter, distance between the piles (gap), besides the number of piles normal to the flow and the number of piles in-line with flow, while the second combination contains seven non-dimensional parameters which is a composition of dimensional parameters. The training and testing experimental data on local scour at pile groups are selected from several precious references. Networks' results have been compared with the results of empirical methods that are already considered in this study. Numerical tests indicate that FFBP-NN model provides a better prediction than the other models. Also a sensitivity analysis showed that the pile diameter in dimensional variables and ratio of pile spacing to pile diameter in non-dimensional parameters are the most significant parameters on scour depth.
KW - Neural network
KW - Neuro-fuzzy
KW - Pile group
KW - Scour depth
KW - Sensitivity analysis
UR - http://www.scopus.com/inward/record.url?scp=58549088485&partnerID=8YFLogxK
U2 - 10.1016/j.asoc.2008.09.006
DO - 10.1016/j.asoc.2008.09.006
M3 - Article
AN - SCOPUS:58549088485
SN - 1568-4946
VL - 9
SP - 746
EP - 755
JO - Applied Soft Computing Journal
JF - Applied Soft Computing Journal
IS - 2
ER -