Abstract
Purpose: We investigated the recovery and extraction efficiency of DNA from three metal surfaces (brass, copper, steel) relevant to forensic casework, and plastic (control) using two different swabbing systems; Rayon and Isohelix™ swabs, with sterile water and isopropyl alcohol respectively, as the wetting solutions. Methods: Twenty nanograms of human genomic DNA were applied directly to Isohelix™ and Rayon swabs; and to the metal and plastic substrates. All substrates were left to dry for 24 h, followed by single wet swabbing and extraction with the DNA IQ™ System. DNA extracts were quantified using real time quantitative PCR assays with SYBR green chemistry. Results: DNA was extracted from directly seeded Isohelix™ swabs with a high efficiency of 98%, indicating effective DNA-release from the swab into the extraction buffer. In contrast, only 58% of input DNA was recovered from seeded Rayon swabs, indicating higher DNA retention by these swabs. Isohelix™ swabs recovered 32 – 53% of DNA from metal surfaces, whilst the Rayon swabs recovered 11—29%. DNA recovery was lowest from copper and highest from brass. Interestingly, Rayon swabs appeared to collect more DNA from the plastic surface than Isohelix™ swabs, however, due to the lower release of DNA from Rayon swabs they returned less DNA overall following extraction than Isohelix™ swabs. Conclusion: These results demonstrate that DNA samples deposited on metal surfaces can be more efficiently recovered using Isohelix™ swabs wetted with isopropyl alcohol than Rayon swabs wetted with sterile water, although recovery is affected by the substrate type.
Original language | English |
---|---|
Pages (from-to) | 199-207 |
Number of pages | 9 |
Journal | Forensic Science, Medicine, and Pathology |
Volume | 17 |
Issue number | 2 |
Early online date | 12 Nov 2020 |
DOIs | |
Publication status | Published - Jun 2021 |
Keywords
- Collection efficiency
- Extraction efficiency
- Isohelix™ swab
- Metal surfaces
- Rayon swab
- Release efficiency