Evidence for rapid downward fecundity selection in an ectoparasite (Philornis downsi) with earlier host mortality in Darwin’s finches

Lauren K. Common, Jody A. O’Connor, Rachael Y. Dudaniec, Katharina J. Peters, Sonia Kleindorfer

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)
63 Downloads (Pure)

Abstract

Fecundity selection is a critical component of fitness and a major driver of adaptive evolution. Trade-offs between parasite mortality and host resources are likely to impose a selection pressure on parasite fecundity, but this is little studied in natural systems. The ‘fecundity advantage hypothesis’ predicts female-biased sexual size dimorphism whereby larger females produce more offspring. Parasitic insects are useful for exploring the interplay between host resource availability and parasite fecundity, because female body size is a reliable proxy for fecundity in insects. Here we explore temporal changes in body size in the myiasis-causing parasite Philornis downsi (Diptera: Muscidae) on the Galápagos Islands under conditions of earlier in-nest host mortality. We aim to investigate the effects of decreasing host resources on parasite body size and fecundity. Across a 12-year period, we observed a mean of c. 17% P. downsi mortality in host nests with 55 ± 6.2% host mortality and a trend of c. 66% higher host mortality throughout the study period. Using specimens from 116 Darwin's finch nests (Passeriformes: Thraupidae) and 114 traps, we found that over time, P. downsi pupae mass decreased by c. 32%, and male (c. 6%) and female adult size (c. 11%) decreased. Notably, females had c. 26% smaller abdomens in later years, and female abdomen size was correlated with number of eggs. Our findings imply natural selection for faster P. downsi pupation and consequently smaller body size and lower parasite fecundity in this newly evolving host–parasite system.

Original languageEnglish
Pages (from-to)524-533
Number of pages10
JournalJournal of Evolutionary Biology
Volume33
Issue number4
DOIs
Publication statusPublished - 5 Apr 2020

Bibliographical note

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

Keywords

  • abdomen size
  • body size
  • Darwin's finches
  • Diptera
  • Galápagos Islands
  • host–parasite

Fingerprint

Dive into the research topics of 'Evidence for rapid downward fecundity selection in an ectoparasite (Philornis downsi) with earlier host mortality in Darwin’s finches'. Together they form a unique fingerprint.

Cite this