TY - JOUR
T1 - Experimental Depth Profiles of Surfactants, Ions, and Solvent at the Angstrom Scale
T2 - Studies of Cationic and Anionic Surfactants and Their Salting Out
AU - Zhao, Xianyuan
AU - Nathanson, Gilbert M.
AU - Andersson, Gunther
PY - 2020/3/19
Y1 - 2020/3/19
N2 - Neutral impact ion scattering spectroscopy (NICISS) is used to measure the depth profiles of ionic surfactants, counterions, and solvent molecules on the angstrom scale. The chosen surfactants are 0.010 m tetrahexylammonium bromide (THA+/Br-) and 0.0050 m sodium dodecyl sulfate (Na+/DS-) in the absence and presence of 0.30 m NaBr in liquid glycerol. NICISS determines the depth profiles of the elements C, O, Na, S, and Br through the loss in energy of 5 keV He atoms that travel into and out of the liquid, which is then converted into depth. In the absence of NaBr, we find that THA+ and its Br- counterion segregate together because of charge attraction, forming a narrow double layer that is 10 Å wide and 150 times more concentrated than in the bulk. With the addition of NaBr, THA+ is "salted out" to the surface, increasing the interfacial Br- concentration by 3-fold and spreading the anions over a ∼30 Å depth. Added NaBr similarly increases the interfacial concentration of DS- ions and broadens their positions. Conversely, the dissolved Br- ions are significantly depleted over a depth of 0-40 Å from the surface because of charge repulsion from DS- ions within the interfacial region. These different interfacial Br- propensities correlate with previously measured gas-liquid reactivities: gaseous Cl2 readily reacts with Br- ions in the presence of THA+ but drops 70-fold in the presence of DS-, demonstrating that surfactant headgroup charge controls the reactivity of Br- through changes in its depth profile.
AB - Neutral impact ion scattering spectroscopy (NICISS) is used to measure the depth profiles of ionic surfactants, counterions, and solvent molecules on the angstrom scale. The chosen surfactants are 0.010 m tetrahexylammonium bromide (THA+/Br-) and 0.0050 m sodium dodecyl sulfate (Na+/DS-) in the absence and presence of 0.30 m NaBr in liquid glycerol. NICISS determines the depth profiles of the elements C, O, Na, S, and Br through the loss in energy of 5 keV He atoms that travel into and out of the liquid, which is then converted into depth. In the absence of NaBr, we find that THA+ and its Br- counterion segregate together because of charge attraction, forming a narrow double layer that is 10 Å wide and 150 times more concentrated than in the bulk. With the addition of NaBr, THA+ is "salted out" to the surface, increasing the interfacial Br- concentration by 3-fold and spreading the anions over a ∼30 Å depth. Added NaBr similarly increases the interfacial concentration of DS- ions and broadens their positions. Conversely, the dissolved Br- ions are significantly depleted over a depth of 0-40 Å from the surface because of charge repulsion from DS- ions within the interfacial region. These different interfacial Br- propensities correlate with previously measured gas-liquid reactivities: gaseous Cl2 readily reacts with Br- ions in the presence of THA+ but drops 70-fold in the presence of DS-, demonstrating that surfactant headgroup charge controls the reactivity of Br- through changes in its depth profile.
KW - Depth Profiles
KW - Angstrom Scale
KW - Cationic and Anionic Surfactants
KW - Their Salting Out
KW - Surfactants, Ions and Solvent
UR - http://www.scopus.com/inward/record.url?scp=85082093765&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcb.9b11686
DO - 10.1021/acs.jpcb.9b11686
M3 - Article
C2 - 32075369
VL - 124
SP - 2218
EP - 2229
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1520-6106
IS - 11
ER -