Abstract
The extended-domain-eigenfunction method (EDEM) proposed for solving elliptic boundary value problems on annular-like domains requires an inversion process. The procedure thus represents an ill-posed problem, whose numerical solution involves an ill-conditioned system of equations. In this paper, the ill-posed nature of EDEM is studied and numerical solutions based on regularization schemes are considered. It is shown that the EDEM solution methodology lends itself naturally to a formulation in terms of the well-known iterative Landweber method and the more general and faster converging semi-iterative regularization schemes. Theoretical details and numerical results of the regularization schemes are presented for the case of the two-dimensional Laplace operator on annular domains.
Original language | English |
---|---|
Article number | 085207 |
Pages (from-to) | 085207 |
Number of pages | 22 |
Journal | Journal of Physics A: Mathematical and General |
Volume | 46 |
Issue number | 8 |
DOIs | |
Publication status | Published - 1 Mar 2013 |