TY - JOUR
T1 - Forest mosaics, not savanna corridors, dominated in Southeast Asia during the Last Glacial Maximum
AU - Hamilton, Rebecca
AU - Amano, Noel
AU - Bradshaw, Corey J. A.
AU - Saltre, Frederik
AU - Patalano, Robert
AU - Penny, Dan
AU - Stevenson, Janelle
AU - Wolfhagen, Jesse
AU - Roberts, Patrick
PY - 2024/1/2
Y1 - 2024/1/2
N2 - The dominant paradigm is that large tracts of Southeast Asia’s lowland rainforests were replaced with a “savanna corridor” during the cooler, more seasonal climates of the Last Glacial Maximum (LGM) (23,000 to 19,000 y ago). This interpretation has implications for understanding the resilience of Asia’s tropical forests to projected climate change, implying a vulnerability to “savannization”. A savanna corridor is also an important foundation for archaeological interpretations of how humans moved through and settled insular Southeast Asia and Australia. Yet an up-to-date, multiproxy, and empirical examination of the palaeoecological evidence for this corridor is lacking. We conducted qualitative and statistical analyses of 59 palaeoecological records across Southeast Asia to test the evidence for LGM savannization and clarify the relationships between methods, biogeography, and ecological change in the region from the start of Late Glacial Period (119,000 y ago) to the present. The pollen records typically show montane forest persistence during the LGM, while δ13C biomarker proxies indicate the expansion of C4-rich grasslands. We reconcile this discrepancy by hypothesizing the expansion of montane forest in the uplands and replacement of rainforest with seasonally dry tropical forest in the lowlands. We also find that smooth forest transitions between 34,000 and 2,000 y ago point to the capacity of Southeast Asia’s ecosystems both to resist and recover from climate stressors, suggesting resilience to savannization. Finally, the timing of ecological change observed in our combined datasets indicates an ‘early’ onset of the LGM in Southeast Asia from ~30,000 y ago.
AB - The dominant paradigm is that large tracts of Southeast Asia’s lowland rainforests were replaced with a “savanna corridor” during the cooler, more seasonal climates of the Last Glacial Maximum (LGM) (23,000 to 19,000 y ago). This interpretation has implications for understanding the resilience of Asia’s tropical forests to projected climate change, implying a vulnerability to “savannization”. A savanna corridor is also an important foundation for archaeological interpretations of how humans moved through and settled insular Southeast Asia and Australia. Yet an up-to-date, multiproxy, and empirical examination of the palaeoecological evidence for this corridor is lacking. We conducted qualitative and statistical analyses of 59 palaeoecological records across Southeast Asia to test the evidence for LGM savannization and clarify the relationships between methods, biogeography, and ecological change in the region from the start of Late Glacial Period (119,000 y ago) to the present. The pollen records typically show montane forest persistence during the LGM, while δ13C biomarker proxies indicate the expansion of C4-rich grasslands. We reconcile this discrepancy by hypothesizing the expansion of montane forest in the uplands and replacement of rainforest with seasonally dry tropical forest in the lowlands. We also find that smooth forest transitions between 34,000 and 2,000 y ago point to the capacity of Southeast Asia’s ecosystems both to resist and recover from climate stressors, suggesting resilience to savannization. Finally, the timing of ecological change observed in our combined datasets indicates an ‘early’ onset of the LGM in Southeast Asia from ~30,000 y ago.
KW - monsoon forest
KW - Southeast Asia
KW - Quaternary
KW - grassland
KW - palaeoenvironmental change
KW - ecological regime shift
KW - tropical forests
KW - Last Glacial Maximum
KW - palaeoecology
KW - palynology
UR - http://www.scopus.com/inward/record.url?scp=85180881832&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/ARC/CE170100015
U2 - 10.1073/pnas.2311280120
DO - 10.1073/pnas.2311280120
M3 - Article
SN - 0027-8424
VL - 121
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 1
M1 - e2311280120
ER -