Abstract
Aquaculture of barramundi or Asian seabass (Lates calcarifer) is growing in both Australia and Southeast Asia and there is substantial interest to improve production efficiency through selective breeding. The establishment of a large and genetically diverse base population is a prerequisite for a sustainable and long-term productive breeding program. Before selective breeding programs can begin for Australian barramundi it is important to assess the overall genetic diversity of current captive broodstock populations. To address this question, 407 captive barramundi broodstock from eight separate Australian broodstock populations were genotyped using 16 polymorphic microsatellite DNA markers. A Bayesian STRUCTURE analysis indicated that captive Australian broodstock are broadly divided into two genetic stocks. Multivariate analysis between broodstock individuals and pairwise FST between broodstock populations also supported the existence of two stocks. Comparisons with data obtained from natural stocks suggested that hatchery individuals were either sourced from the two stocks or represented an admixture between them. Genetic diversity was low within each broodstock population (allelic richness ranged from 2.67 to 3.42 and heterozygosity ranged from 0.453 to 0.537) and relatedness estimates within hatcheries were generally low (average r was equal to 0.141). We recommend sourcing captive individuals according to high levels of neutral genetic diversity and low levels of relatedness for the establishment of a base population. We also make recommendations about including genetically diverse wild individuals.
Original language | English |
---|---|
Pages (from-to) | 3570-3584 |
Number of pages | 15 |
Journal | Aquaculture Research |
Volume | 47 |
Issue number | 11 |
DOIs | |
Publication status | Published - 1 Nov 2016 |
Keywords
- Asian seabass
- captive breeding
- genetic diversity
- microsatellite
- relatedness