Groundwater facilitated water-use efficiency along a gradient of groundwater depth in arid northwestern China

Bing Liu, Huade Guan, Wenzhi Zhao, Yuting Yang, Shoubo Li

    Research output: Contribution to journalArticlepeer-review

    37 Citations (Scopus)

    Abstract

    Groundwater strongly impacts ecosystem performance in arid regions by driving vegetation structure and species distribution. It is unknown how water use efficiency varies along a gradient of depth to groundwater (DWT). In this study, we developed a framework to estimate water use efficiency (WUE), groundwater use efficiency (GUE), and rain use efficiency (RUE), and to examine the contribution of rainfall to transpiration in groundwater-dependent ecosystems (GDEs). The method was applied to an arid region in northwest China with a gradient of groundwater depth from 0.5 to 12 m. The results indicate that the above-ground primary production, evapotranspiration, plant transpiration, WUE, and GUE decreased significantly from riparian forest, wetland, oasis edge, desert-oasis ecotone, and to sandy desert along a gradient of increasing DWT. RUE is found to be 0.26 g m−2 mm−1 at the sandy desert without groundwater contribution where 21% of rainfall is used for transpiration. Water use efficiency increases to 0.85 g m−2 mm−1 at the riparian site where groundwater is about 0.5 m depth. The fraction of rainfall consumed by plants increases with a decreasing DWT from a threshold of 6.3 m, suggesting groundwater enhances rain use efficiency in GDEs.

    Original languageEnglish
    Pages (from-to)235-241
    Number of pages7
    JournalAgricultural and Forest Meteorology
    Volume233
    DOIs
    Publication statusPublished - 15 Feb 2017

    Keywords

    • Aboveground net primary production
    • Groundwater
    • Groundwater use efficiency
    • Rain use efficiency
    • Rainfall
    • Water-use efficiency

    Fingerprint

    Dive into the research topics of 'Groundwater facilitated water-use efficiency along a gradient of groundwater depth in arid northwestern China'. Together they form a unique fingerprint.

    Cite this