TY - JOUR
T1 - Heart Rate-Dependent Stiffening of Large Arteries in Intact and Sympathectomized Rats
AU - Mircoli, Luca
AU - Mangoni, Arduino A.
AU - Giannattasio, Cristina
AU - Mancia, Giuseppe
AU - Ferrari, Alberto U.
PY - 1999/10
Y1 - 1999/10
N2 - In the anesthetized rat, acute increases in heart rate are accompanied by a reduction in arterial distensibility, which is a significant phenomenon in elastic-type vessels such as the common carotid but much less evident in muscle-type vessels such as the femoral artery. Because the sympathetic nervous system importantly reduces arterial distensibility, the present study aimed to determine whether sympathetic influences (1) are involved in the heart rate-dependent changes in arterial distensibility and (2) exert differential effects on elastic-type versus muscle-type arteries. To address this issue, 9 sympathectomized (6-hydroxydopamine) and 10 vehicle-treated, 12-week-old, pentobarbitone-anesthetized Wistar-Kyoto rats were subjected to atrial pacing via a transjugular catheter at 5 different randomly sequenced rates (280, 310, 340, 370, and 400 bpm). After each step, spontaneous sinus rhythm was allowed to return to normal. Common carotid and femoral artery diameters were measured by an echo Doppler device (NIUS 01), and blood pressure was measured via catheter inserted into the contralateral vessel. Arterial distensibility was calculated over the systolic-diastolic pressure range according to the Langewouters formula. In the common carotid artery, progressive increases in heart rate determined progressive and marked reductions of distensibility (range, 15% to 43%) in sympathectomized and intact rats. In the femoral artery, the stiffening effect of tachycardia was present in sympathectomized rats (range, 21% to 42%), at variance with the inconsistent changes observed in intact rats. In conclusion, our experiments support the notions (1) that in predominantly elastic-type arteries, the stiffening effect of tachycardia is exerted independently of sympathetic modulation of the vessel wall properties and (2) that in predominantly muscle-type arteries, removal of sympathetic influences unmasks the stiffening effect of tachycardia.
AB - In the anesthetized rat, acute increases in heart rate are accompanied by a reduction in arterial distensibility, which is a significant phenomenon in elastic-type vessels such as the common carotid but much less evident in muscle-type vessels such as the femoral artery. Because the sympathetic nervous system importantly reduces arterial distensibility, the present study aimed to determine whether sympathetic influences (1) are involved in the heart rate-dependent changes in arterial distensibility and (2) exert differential effects on elastic-type versus muscle-type arteries. To address this issue, 9 sympathectomized (6-hydroxydopamine) and 10 vehicle-treated, 12-week-old, pentobarbitone-anesthetized Wistar-Kyoto rats were subjected to atrial pacing via a transjugular catheter at 5 different randomly sequenced rates (280, 310, 340, 370, and 400 bpm). After each step, spontaneous sinus rhythm was allowed to return to normal. Common carotid and femoral artery diameters were measured by an echo Doppler device (NIUS 01), and blood pressure was measured via catheter inserted into the contralateral vessel. Arterial distensibility was calculated over the systolic-diastolic pressure range according to the Langewouters formula. In the common carotid artery, progressive increases in heart rate determined progressive and marked reductions of distensibility (range, 15% to 43%) in sympathectomized and intact rats. In the femoral artery, the stiffening effect of tachycardia was present in sympathectomized rats (range, 21% to 42%), at variance with the inconsistent changes observed in intact rats. In conclusion, our experiments support the notions (1) that in predominantly elastic-type arteries, the stiffening effect of tachycardia is exerted independently of sympathetic modulation of the vessel wall properties and (2) that in predominantly muscle-type arteries, removal of sympathetic influences unmasks the stiffening effect of tachycardia.
KW - Arterial pressure
KW - Atrial
KW - Heart rate
KW - Pacing
KW - Rats
KW - Sympathetic nervous system
KW - Ultrasonography
UR - http://www.scopus.com/inward/record.url?scp=0032720510&partnerID=8YFLogxK
U2 - 10.1161/01.HYP.34.4.598
DO - 10.1161/01.HYP.34.4.598
M3 - Article
C2 - 10523333
AN - SCOPUS:0032720510
VL - 34
SP - 598
EP - 602
JO - Hypertension
JF - Hypertension
SN - 0194-911X
IS - 4
ER -