Abstract
The early detection of fruit disorders is crucial to maintaining a consistent, high-quality kiwifruit product. Chilling injury is a physiological disorder found in kiwifruit that can be challenging to identify until it reaches a severe stage or the fruit is cut and opened. Considering this, Raman spectroscopy combined with chemometrics was investigated for sound and chill-damaged ‘Zesy002’ kiwifruit. We carried out spectral analysis on fruit harvested in 2018 and 2019. Damaged and sound fruit samples were separated based on spectral signatures from phenyl propanoids and sugars. Furthermore, the 2018 fruit sample set was used to construct, validate, and test models using support vector machine, principal component analysis–linear discriminant analysis, and partial least squares–discriminant analysis. Additionally, the robustness of the model was assessed using the 2019 fruit sample set considering test set accuracy, sensitivity, and specificity. Support vector machine models were developed and resulted in a 93% accuracy, 85% sensitivity, and 100% specificity to differentiate the test set fruit (2018 season). Principal component analysis–linear discriminant analysis models and partial least squares–discriminant analysis model built with the same data set gave >83% and 93% test accuracy, respectively. Models showed robustness with samples from the 2019 season. This study provides insights into the potential of using Raman spectroscopy for identifying chilling injury in kiwifruit.
Original language | English |
---|---|
Pages (from-to) | 316-323 |
Number of pages | 8 |
Journal | Journal of Raman Spectroscopy |
Volume | 55 |
Issue number | 3 |
Early online date | 14 Nov 2023 |
DOIs | |
Publication status | Published - Mar 2024 |
Externally published | Yes |
Keywords
- chilling injury
- kiwifruit
- multivariate classification techniques
- principal component analysis
- Raman spectroscopy