Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes

Natalie S. Betts, Helen M. Collins, Neil J. Shirley, Jose A. Cuesta-Seijo, Julian G. Schwerdt, Renee J. Phillips, Christine Finnie, Geoffrey B. Fincher, Christoph Dockter, Birgitte Skadhauge, Vincent Bulone

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Arabinoxylans are cell wall polysaccharides whose re-modelling and degradation during plant development are mediated by several classes of xylanolytic enzymes. Here, we present the identification and new annotation of twelve putative (1,4)-β-xylanase and six β-xylosidase genes, and their spatio-temporal expression patterns during vegetative and reproductive growth of barley (Hordeum vulgare cv. Navigator). The encoded xylanase proteins are all predicted to contain a conserved carbohydrate-binding module (CBM) and a catalytic glycoside hydrolase (GH) 10 domain. Additional domains in some xylanases define three discrete phylogenetic clades: one clade contains proteins with an additional N-terminal signal sequence, while another clade contains proteins with multiple CBMs. Homology modelling revealed that all fifteen xylanases likely contain a third domain, a β-sandwich folded from two non-contiguous sequence segments that bracket the catalytic GH domain, which may explain why the full length protein is required for correct folding of the active enzyme. Similarly, predicted xylosidase proteins share a highly conserved domain structure, each with an N-terminal signal peptide, a split GH 3 domain, and a C-terminal fibronectin-like domain. Several genes appear to be ubiquitously expressed during barley growth and development, while four newly annotated xylanase and xylosidase genes are expressed at extremely high levels, which may be of broader interest for industrial applications where cell wall degradation is necessary.

Original languageEnglish
Article number110792
Number of pages12
JournalPlant Science
Volume308
DOIs
Publication statusPublished - Jul 2021
Externally publishedYes

Keywords

  • Arabinoxylan
  • Barley
  • Cell wall
  • Xylanase
  • Xylosidase

Fingerprint

Dive into the research topics of 'Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes'. Together they form a unique fingerprint.

Cite this