Abstract
The objective of the present work was to develop a thermostable β-glucosidase through immobilization on a nanoscale carrier for potential application in biofuel production. β-Glucosidase (BGL) from Aspergillus niger was immobilized to functionalized magnetic nanoparticles by covalent binding. Immobilized nanoparticles showed 93% immobilization binding. Immobilized and free BGL were characterized using Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) techniques. Free and immobilized enzyme exhibited different pH-optima at pH 4.0 and 6.0, respectively, but had the same temperature optima at 60°C. Michaelis constant (K M) was 3.5 and 4.3mM for free and immobilized BGL. Thermal stability of the immobilized enzyme was enhanced at 70°C. The immobilized nanoparticle-enzyme conjugate retained more than 50% enzyme activity up to the 16th cycle. Maximum glucose synthesis from cellobiose hydrolysis by immobilized BGL was achieved at 16h.
Original language | English |
---|---|
Pages (from-to) | 2-6 |
Number of pages | 5 |
Journal | Bioresource Technology |
Volume | 135 |
DOIs | |
Publication status | Published - May 2013 |
Keywords
- Biofuel
- Cellulase
- Iron oxide
- Lignocellulose
- Nanobiotechnology