Impact of Hydrostatic Pressure on Molecular Structure and Dynamics of the Sodium and Chloride Ions in Portlandite Nanopores

Run Zhang, Hongping Zhang, Meng Chen, Laibao Liu, Hongbin Tan, Youhong Tang

Research output: Contribution to journalArticlepeer-review

17 Downloads (Pure)

Abstract

In order to address the issues of energy depletion, more resources are being searched for in the deep sea. Therefore, research into how the deep-sea environment affects cement-based materials for underwater infrastructure is required. This paper examines the impact of ocean depth (0, 500, 1000, and 1500 m) on the ion interaction processes in concrete nanopores using molecular dynamics simulations. At the portlandite interface, the local structural and kinetic characteristics of ions and water molecules are examined. The findings show that the portlandite surface hydrophilicity is unaffected by increasing depth. The density profile and coordination number of ions alter as depth increases, and the diffusion speed noticeably decreases. The main cause of the ions’ reduced diffusion velocity is expected to be the low temperature. This work offers a thorough understanding of the cement hydration products’ microstructure in deep sea, which may help explain why cement-based underwater infrastructure deteriorates over time.

Original languageEnglish
Article number2151
Number of pages16
JournalMaterials
Volume17
Issue number9
DOIs
Publication statusPublished - 1 May 2024

Keywords

  • deep sea
  • diffusion
  • molecular dynamics simulation
  • portlandite

Fingerprint

Dive into the research topics of 'Impact of Hydrostatic Pressure on Molecular Structure and Dynamics of the Sodium and Chloride Ions in Portlandite Nanopores'. Together they form a unique fingerprint.

Cite this