TY - JOUR
T1 - In Vitro Activity of Pyronaridine against Multidrug-Resistant Plasmodium falciparum and Plasmodium vivax
AU - Price, Ric
AU - Marfurt, J
AU - Chalfein, Ferryanto
AU - Kenangalem, E
AU - Piera, Kim
AU - Tjitra, E
AU - Anstey, Nicholas
AU - Russell, Bruce
PY - 2010/12
Y1 - 2010/12
N2 - Pyronaridine, a Mannich base antimalarial, has demonstrated high in vivo and in vitro efficacy against chloroquine-resistant Plasmodium falciparum. Although this drug has the potential to become a prominent artemisinin combination therapy, little is known about its efficacy against drug-resistant Plasmodium vivax. The in vitro antimalarial susceptibility of pyronaridine was assessed in multidrug-resistant P. vivax (n = 99) and P. falciparum (n = 90) isolates from Papua, Indonesia, using a schizont maturation assay. The median 50% inhibitory concentration (IC50) of pyronaridine was 1.92 nM (range, 0.24 to 13.8 nM) against P. falciparum and 2.58 nM (range, 0.13 to 43.6 nM) against P. vivax, with in vitro susceptibility correlating significantly with chloroquine, amodiaquine, and piperaquine (rs [Spearman's rank correlation coefficient] = 0.45 to 0.62; P < 0.001). P. falciparum parasites initially at trophozoite stage had higher IC50s of pyronaridine than those exposed at the ring stage (8.9 nM [range, 0.6 to 8.9 nM] versus 1.6 nM [range, 0.6 to 8.9 nM], respectively; P = 0.015), although this did not reach significance for P. vivax (4.7 nM [range, 1.4 to 18.7 nM] versus 2.5 nM [range, 1.4 to 15.6 nM], respectively; P = 0.085). The excellent in vitro efficacy of pyronaridine against both chloroquine-resistant P. vivax and P. falciparum highlights the suitability of the drug as a novel partner for artemisinin-based combination therapy in regions where the two species are coendemic.
AB - Pyronaridine, a Mannich base antimalarial, has demonstrated high in vivo and in vitro efficacy against chloroquine-resistant Plasmodium falciparum. Although this drug has the potential to become a prominent artemisinin combination therapy, little is known about its efficacy against drug-resistant Plasmodium vivax. The in vitro antimalarial susceptibility of pyronaridine was assessed in multidrug-resistant P. vivax (n = 99) and P. falciparum (n = 90) isolates from Papua, Indonesia, using a schizont maturation assay. The median 50% inhibitory concentration (IC50) of pyronaridine was 1.92 nM (range, 0.24 to 13.8 nM) against P. falciparum and 2.58 nM (range, 0.13 to 43.6 nM) against P. vivax, with in vitro susceptibility correlating significantly with chloroquine, amodiaquine, and piperaquine (rs [Spearman's rank correlation coefficient] = 0.45 to 0.62; P < 0.001). P. falciparum parasites initially at trophozoite stage had higher IC50s of pyronaridine than those exposed at the ring stage (8.9 nM [range, 0.6 to 8.9 nM] versus 1.6 nM [range, 0.6 to 8.9 nM], respectively; P = 0.015), although this did not reach significance for P. vivax (4.7 nM [range, 1.4 to 18.7 nM] versus 2.5 nM [range, 1.4 to 15.6 nM], respectively; P = 0.085). The excellent in vitro efficacy of pyronaridine against both chloroquine-resistant P. vivax and P. falciparum highlights the suitability of the drug as a novel partner for artemisinin-based combination therapy in regions where the two species are coendemic.
UR - http://www.scopus.com/inward/record.url?scp=78649685500&partnerID=8YFLogxK
U2 - 10.1128/AAC.00801-10
DO - 10.1128/AAC.00801-10
M3 - Article
SN - 0066-4804
VL - 54
SP - 5146
EP - 5150
JO - Antimicrobial Agents and Chemotherapy
JF - Antimicrobial Agents and Chemotherapy
IS - 12
ER -