TY - JOUR
T1 - Insights into DDT resistance from the Drosophila melanogaster genetic reference panel
AU - Schmidt, Joshua M
AU - Battlay, Paul
AU - Gledhill-Smith, Rebecca S
AU - Good, Robert T
AU - Lumb, Chris
AU - Fournier-Level, Alexandre
AU - Robin, Charles
PY - 2017/11
Y1 - 2017/11
N2 - Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in Drosophila melanogaster; however, only the Cyp6g1 locus has previously been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance loci. A largely uncharacterized gene, CG10737, has a function in muscles that ameliorates the effects of DDT, while a putative detoxifying P450, Cyp6w1, shows compelling evidence of positive selection.
AB - Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in Drosophila melanogaster; however, only the Cyp6g1 locus has previously been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance loci. A largely uncharacterized gene, CG10737, has a function in muscles that ameliorates the effects of DDT, while a putative detoxifying P450, Cyp6w1, shows compelling evidence of positive selection.
KW - CG10737
KW - Cyp6w1
KW - DDT
KW - Drosophila genetic reference panel (DGRP)
KW - Triallele
UR - http://www.scopus.com/inward/record.url?scp=85032930131&partnerID=8YFLogxK
U2 - 10.1534/genetics.117.300310
DO - 10.1534/genetics.117.300310
M3 - Article
SN - 0016-6731
VL - 207
SP - 1181
EP - 1193
JO - Genetics
JF - Genetics
IS - 3
ER -