Abstract
A new urea functionalised 4-amino-1,8-naphthalimide based fluorescent anion sensor was synthesised in 64% yield over three steps. Fluorescence and 1H NMR titrations showed that the sensor complexes strongly with acetate and dihydrogen phosphate and to a lesser extent bromide. The corresponding binding stoichiometries were examined using 1H NMR titrations. Results show that the sensor molecule initially forms 1:1 complexes through hydrogen bonding to the urea moiety, followed by secondary complexation to form higher order host:guest stoichiometries. Specifically, oxyanions complex to the sensor via hydrogen bonding through synergistic aryl C-H and N-H anion interactions in a 1:2 sensor:oxyanion arrangement. Furthermore, 2:1 sensor:oxyanion complexes are formed through an oxyanion linkage between two urea functionalities on different host molecules. This contrasts the majority of previous reports for similar hosts, which indicate 1:1 binding stoichiometry.
Original language | English |
---|---|
Article number | 2512 |
Pages (from-to) | Art: 2512 |
Number of pages | 7 |
Journal | Scientific Reports |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2017 |