TY - JOUR
T1 - Insomnia subtypes characterised by objective sleep duration and NREM spectral power and the effect of acute sleep restriction
T2 - an exploratory analysis
AU - Kao, Chien Hui
AU - D’Rozario, Angela L.
AU - Lovato, Nicole
AU - Wassing, Rick
AU - Bartlett, Delwyn
AU - Memarian, Negar
AU - Espinel, Paola
AU - Kim, Jong Won
AU - Grunstein, Ronald R.
AU - Gordon, Christopher J.
PY - 2021/12
Y1 - 2021/12
N2 - Insomnia disorder (ID) is a heterogeneous disorder with proposed subtypes based on objective sleep duration. We speculated that insomnia subtyping with additional power spectral analysis and measurement of response to acute sleep restriction may be informative in overall assessment of ID. To explore alternative classifications of ID subtypes, insomnia patients (n = 99) underwent two consecutive overnight sleep studies: (i) habitual sleep opportunity (polysomnography, PSG) and, (ii) two hours less sleep opportunity (electroencephalography, EEG), with the first night compared to healthy controls (n = 25). ID subtypes were derived from data-driven classification of PSG, EEG spectral power and interhemispheric EEG asymmetry index. Three insomnia subtypes with different sleep duration and NREM spectral power were identified. One subtype (n = 26) had shorter sleep duration and lower NREM delta power than healthy controls (short-sleep delta-deficient; SSDD), the second subtype (n = 51) had normal sleep duration but lower NREM delta power than healthy controls (normal-sleep delta-deficient; NSDD) and a third subtype showed (n = 22) no difference in sleep duration or delta power from healthy controls (normal neurophysiological sleep; NNS). Acute sleep restriction improved multiple objective sleep measures across all insomnia subtypes including increased delta power in SSDD and NSDD, and improvements in subjective sleep quality for SSDD (p = 0.03), with a trend observed for NSDD (p = 0.057). These exploratory results suggest evidence of novel neurophysiological insomnia subtypes that may inform sleep state misperception in ID and with further research, may provide pathways for personalised care.
AB - Insomnia disorder (ID) is a heterogeneous disorder with proposed subtypes based on objective sleep duration. We speculated that insomnia subtyping with additional power spectral analysis and measurement of response to acute sleep restriction may be informative in overall assessment of ID. To explore alternative classifications of ID subtypes, insomnia patients (n = 99) underwent two consecutive overnight sleep studies: (i) habitual sleep opportunity (polysomnography, PSG) and, (ii) two hours less sleep opportunity (electroencephalography, EEG), with the first night compared to healthy controls (n = 25). ID subtypes were derived from data-driven classification of PSG, EEG spectral power and interhemispheric EEG asymmetry index. Three insomnia subtypes with different sleep duration and NREM spectral power were identified. One subtype (n = 26) had shorter sleep duration and lower NREM delta power than healthy controls (short-sleep delta-deficient; SSDD), the second subtype (n = 51) had normal sleep duration but lower NREM delta power than healthy controls (normal-sleep delta-deficient; NSDD) and a third subtype showed (n = 22) no difference in sleep duration or delta power from healthy controls (normal neurophysiological sleep; NNS). Acute sleep restriction improved multiple objective sleep measures across all insomnia subtypes including increased delta power in SSDD and NSDD, and improvements in subjective sleep quality for SSDD (p = 0.03), with a trend observed for NSDD (p = 0.057). These exploratory results suggest evidence of novel neurophysiological insomnia subtypes that may inform sleep state misperception in ID and with further research, may provide pathways for personalised care.
KW - electroencephalography (EEG)
KW - Neurophysiology
KW - Sleep disorders
UR - http://www.scopus.com/inward/record.url?scp=85121568283&partnerID=8YFLogxK
U2 - 10.1038/s41598-021-03564-6
DO - 10.1038/s41598-021-03564-6
M3 - Article
C2 - 34934082
AN - SCOPUS:85121568283
SN - 2045-2322
VL - 11
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 24331
ER -