Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways

Xiaofeng Zheng, Sarah Linke, José M. Dias, Xiaowei Zheng, Katarina Gradin, Tristan P. Wallis, Brett R. Hamilton, Maria Gustafsson, Jorge L. Ruas, Sarah Wilkins, Rebecca L. Bilton, Kerstin Brismar, Murray L. Whitelaw, Teresa Pereira, Jeffrey J. Gorman, Johan Ericson, Daniel J. Peet, Urban Lendahl, Lorenz Poellinger

Research output: Contribution to journalArticlepeer-review

197 Citations (Scopus)

Abstract

Cells adapt to hypoxia by a cellular response, where hypoxia-inducible factor 1α (HIF-1α) becomes stabilized and directly activates transcription of downstream genes. In addition to this "canonical" response, certain aspects of the pathway require integration with Notch signaling, i.e., HIF-1α can interact with the Notch intracellular domain (ICD) to augment the Notch downstream response. In this work, we demonstrate an additional level of complexity in this cross-talk: factor-inhibiting HIF-1 (FIH-1) regulates not only HIF activity, but also the Notch signaling output and, in addition, plays a role in how Notch signaling modulates the hypoxic response. We show that FIH-1 hydroxylates Notch ICD at two residues (N 1945 and N2012) that are critical for the function of Notch ICD as a transactivator within cells and during neurogenesis and myogenesis in vivo. FIH-1 negatively regulates Notch activity and accelerates myogenic differentiation. In its modulation of the hypoxic response, Notch ICD enhances recruitment of HIF-1α to its target promoters and derepresses HIF-1α function. Addition of FIH-1, which has a higher affinity for Notch ICD than for HIF-1α, abrogates the derepression, suggesting that Notch ICD sequesters FIH-1 away from HIF-1α. In conclusion, the data reveal posttranslational modification of the activated form of the Notch receptor and an intricate mode of cross-coupling between the Notch and hypoxia signaling pathways.

Original languageEnglish
Pages (from-to)3368-3373
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume105
Issue number9
DOIs
Publication statusPublished - 4 Mar 2008
Externally publishedYes

Keywords

  • Gene regulation
  • Hydroxylation
  • Signal transduction

Fingerprint

Dive into the research topics of 'Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways'. Together they form a unique fingerprint.

Cite this