TY - JOUR
T1 - Intermittent hypercapnic hypoxia during sleep does not induce ventilatory long term facilitation in healthy males
AU - Deacon, Naomi
AU - McEvoy, Ronald
AU - Stadler, Daniel
AU - Catcheside, Peter
PY - 2017/9
Y1 - 2017/9
N2 - Intermittent hypoxia-induced ventilatory neuroplasticity is likely important in obstructive sleep apnea pathophysiology. Although concomitant CO2 levels and arousal state critically influence neuroplastic effects of intermittent hypoxia, no studies have investigated intermittent hypercapnic hypoxia effects during sleep in humans. Thus the purpose of this study was to investigate if intermittent hypercapnic hypoxia during sleep induces neuroplasticity (ventilatory long-term facilitation and increased chemoreflex responsiveness) in humans. Twelve healthy males were exposed to intermittent hypercapnic hypoxia (24 30 s episodes of 3% CO2 and 3.0 0.2% O2) and intermittent medical air during sleep after 2 wk washout period in a randomized crossover study design. Minute ventilation, end-tidal CO2, O2 saturation, breath timing, upper airway resistance, and genioglossal and diaphragm electromyograms were examined during 10 min of stable stage 2 sleep preceding gas exposure, during gas and intervening room air periods, and throughout 1 h of room air recovery. There were no significant differences between conditions across time to indicate long-term facilitation of ventilation, genioglossal or diaphragm electromyogram activity, and no change in ventilatory response from the first to last gas exposure to suggest any change in chemoreflex responsiveness. These findings contrast with previous intermittent hypoxia studies without intermittent hypercapnia and suggest that the more relevant gas disturbance stimulus of concomitant intermittent hypercapnia frequently occurring in sleep apnea influences acute neuroplastic effects of intermittent hypoxia. These findings highlight the need for further studies of intermittent hypercapnic hypoxia during sleep to clarify the role of ventilatory neuroplasticity in the pathophysiology of sleep apnea.
AB - Intermittent hypoxia-induced ventilatory neuroplasticity is likely important in obstructive sleep apnea pathophysiology. Although concomitant CO2 levels and arousal state critically influence neuroplastic effects of intermittent hypoxia, no studies have investigated intermittent hypercapnic hypoxia effects during sleep in humans. Thus the purpose of this study was to investigate if intermittent hypercapnic hypoxia during sleep induces neuroplasticity (ventilatory long-term facilitation and increased chemoreflex responsiveness) in humans. Twelve healthy males were exposed to intermittent hypercapnic hypoxia (24 30 s episodes of 3% CO2 and 3.0 0.2% O2) and intermittent medical air during sleep after 2 wk washout period in a randomized crossover study design. Minute ventilation, end-tidal CO2, O2 saturation, breath timing, upper airway resistance, and genioglossal and diaphragm electromyograms were examined during 10 min of stable stage 2 sleep preceding gas exposure, during gas and intervening room air periods, and throughout 1 h of room air recovery. There were no significant differences between conditions across time to indicate long-term facilitation of ventilation, genioglossal or diaphragm electromyogram activity, and no change in ventilatory response from the first to last gas exposure to suggest any change in chemoreflex responsiveness. These findings contrast with previous intermittent hypoxia studies without intermittent hypercapnia and suggest that the more relevant gas disturbance stimulus of concomitant intermittent hypercapnia frequently occurring in sleep apnea influences acute neuroplastic effects of intermittent hypoxia. These findings highlight the need for further studies of intermittent hypercapnic hypoxia during sleep to clarify the role of ventilatory neuroplasticity in the pathophysiology of sleep apnea.
KW - Intermittent hypoxia
KW - Long-term facilitation
KW - Neuroplasticity
KW - Sleep apnea
KW - Ventilation
UR - http://www.scopus.com/inward/record.url?scp=85029742430&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.01005.2016
DO - 10.1152/japplphysiol.01005.2016
M3 - Article
SN - 1439-6319
VL - 123
SP - 534
EP - 543
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
IS - 3
ER -