TY - JOUR
T1 - Investigating Simulated Cellular Interactions on Nanostructured Surfaces with Antibacterial Properties
T2 - Insights from Force Curve Simulations
AU - Wood, Jonathan
AU - Palms, Dennis
AU - Luu, Quan Trong
AU - Vasilev, Krasimir
AU - Bright, Richard
PY - 2025/3/2
Y1 - 2025/3/2
N2 - This study investigates the simulation of interactions between cells and antibacterial nanostructured surfaces. Understanding the physical interaction forces between cells and nanostructured surfaces is crucial for developing antibacterial materials, yet existing physical models are limited. Force simulation studies can simplify analysis by focusing on mechanical interactions while disregarding factors such as bacterial deformation and complex biochemical signals. To simulate these interactions, Atomic Force Microscopy (AFM) was employed to generate force curves, allowing precise monitoring of the interaction between a 5 µm spherical cantilever tip and titanium alloy (Ti6Al4V) surfaces. AFM uniquely enables customized approaches and retraction cycles, providing detailed insights into attractive–repulsive forces across different surface morphologies. Two nanostructured surfaces, created via hydrothermal etching using KOH and NaOH, were compared to a Ti6Al4V control surface. Results demonstrated significant changes in nanomechanical properties due to surface chemistry and morphology. The Ti6Al4V control surface exhibited a 44 ± 5 N/m stiffness, which decreased to 20 ± 3 N/m on KOH-etched nanostructured (NS) surfaces and 29 ± 4 N/m on NaOH-etched NS surfaces. Additionally, surface energy decreased by magnitude on nanostructured surfaces compared to the control. The nature of interaction forces also varied: short-range forces were predominant on KOH-etched surfaces, while NaOH-etched surfaces exhibited stronger long-range forces. These findings provide valuable insights into how nanostructure patterning influences cell-like interactions, offering potential applications in antibacterial surface design. By tailoring nanomechanical properties through specific etching techniques, biomaterial performance can be optimized for clinical applications, enhancing antibacterial efficacy and reducing microbial adhesion.
AB - This study investigates the simulation of interactions between cells and antibacterial nanostructured surfaces. Understanding the physical interaction forces between cells and nanostructured surfaces is crucial for developing antibacterial materials, yet existing physical models are limited. Force simulation studies can simplify analysis by focusing on mechanical interactions while disregarding factors such as bacterial deformation and complex biochemical signals. To simulate these interactions, Atomic Force Microscopy (AFM) was employed to generate force curves, allowing precise monitoring of the interaction between a 5 µm spherical cantilever tip and titanium alloy (Ti6Al4V) surfaces. AFM uniquely enables customized approaches and retraction cycles, providing detailed insights into attractive–repulsive forces across different surface morphologies. Two nanostructured surfaces, created via hydrothermal etching using KOH and NaOH, were compared to a Ti6Al4V control surface. Results demonstrated significant changes in nanomechanical properties due to surface chemistry and morphology. The Ti6Al4V control surface exhibited a 44 ± 5 N/m stiffness, which decreased to 20 ± 3 N/m on KOH-etched nanostructured (NS) surfaces and 29 ± 4 N/m on NaOH-etched NS surfaces. Additionally, surface energy decreased by magnitude on nanostructured surfaces compared to the control. The nature of interaction forces also varied: short-range forces were predominant on KOH-etched surfaces, while NaOH-etched surfaces exhibited stronger long-range forces. These findings provide valuable insights into how nanostructure patterning influences cell-like interactions, offering potential applications in antibacterial surface design. By tailoring nanomechanical properties through specific etching techniques, biomaterial performance can be optimized for clinical applications, enhancing antibacterial efficacy and reducing microbial adhesion.
KW - antibacterial
KW - atomic force microscopy
KW - force curve
KW - nanomechanical
KW - nanostructure
KW - van der Waals
UR - http://www.scopus.com/inward/record.url?scp=105001133007&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/NHMRC/1194466
U2 - 10.3390/nano15060462
DO - 10.3390/nano15060462
M3 - Article
AN - SCOPUS:105001133007
SN - 2079-4991
VL - 15
JO - Nanomaterials
JF - Nanomaterials
IS - 6
M1 - 462
ER -