TY - JOUR
T1 - Is there bidirectional transport of noradrenaline in sympathetic nerves?
AU - Geffen, L. B.
AU - Hunter, C.
AU - Rush, R. A.
PY - 1969/4
Y1 - 1969/4
N2 - The experiments were designed to detect somatopetal transport of [14C]noradrenaline in the postganglionic sympathetic nerves supplying the cat spleen and sheep eye. The animals were treated with nialamide to protect the radioactive noradrenaline, after uptake into the nerve terminals, from monoamine oxidase. In the spleen, the transmitter stores were labelled by infusion of [14C]noradrenaline into a branch of the splenic artery. The branches of the nerves to the infused and non‐infused sides of the spleen were ligated in an attempt to arrest, distal to the constriction, any noradrenaline transported somatopetally in the axons from their terminals. After 24 hr, however, there was less radioactivity in the nerves distal compared to proximal to the constriction, despite heavier labelling of the terminal transmitter stores in the infused portion of the spleen. The proximal accumulation of radioactivity could be attributed to a somatofugal transport of [14C]noradrenaline. Experiments were also done on the intact sympathetic nerve supply of the sheep eye. The sympathetic nerve terminals in the smooth muscle of the left eye were heavily labelled 5 days after the injection of [14C]noradrenaline into the left vitreous humour. However, both superior cervical ganglia were only lightly labelled, and there was no significant difference in the radioactivity present in the two ganglia. The results provide no support for a bidirectional transport of noradrenaline in sympathetic nerves but are consistent with a somatofugal transport of the amine storage vesicles from their site of synthesis in the soma to the axon terminals.
AB - The experiments were designed to detect somatopetal transport of [14C]noradrenaline in the postganglionic sympathetic nerves supplying the cat spleen and sheep eye. The animals were treated with nialamide to protect the radioactive noradrenaline, after uptake into the nerve terminals, from monoamine oxidase. In the spleen, the transmitter stores were labelled by infusion of [14C]noradrenaline into a branch of the splenic artery. The branches of the nerves to the infused and non‐infused sides of the spleen were ligated in an attempt to arrest, distal to the constriction, any noradrenaline transported somatopetally in the axons from their terminals. After 24 hr, however, there was less radioactivity in the nerves distal compared to proximal to the constriction, despite heavier labelling of the terminal transmitter stores in the infused portion of the spleen. The proximal accumulation of radioactivity could be attributed to a somatofugal transport of [14C]noradrenaline. Experiments were also done on the intact sympathetic nerve supply of the sheep eye. The sympathetic nerve terminals in the smooth muscle of the left eye were heavily labelled 5 days after the injection of [14C]noradrenaline into the left vitreous humour. However, both superior cervical ganglia were only lightly labelled, and there was no significant difference in the radioactivity present in the two ganglia. The results provide no support for a bidirectional transport of noradrenaline in sympathetic nerves but are consistent with a somatofugal transport of the amine storage vesicles from their site of synthesis in the soma to the axon terminals.
UR - http://www.scopus.com/inward/record.url?scp=0014497716&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.1969.tb06845.x
DO - 10.1111/j.1471-4159.1969.tb06845.x
M3 - Article
C2 - 5768206
AN - SCOPUS:0014497716
SN - 0022-3042
VL - 16
SP - 469
EP - 474
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 4
ER -