Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV

Yubiao Li, Gujie Qian, Jun Li, Andrea Gerson

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

To better understand chalcopyrite dissolution in hydrogeochemical processes and the related environmental issue of acid and metalliferous drainage (AMD), the kinetics as well as the influence of solution composition and the nature of surface species formed during chalcopyrite dissolution have been examined under the controlled conditions of Eh 650mV (SHE), pH 1.0-2.0 and 75°C, with/without 4mM Fe2+ addition. SEM and XPS analyses indicate that the surface products, both at micro- and nano-scales, did not passivate dissolution under the conditions examined. Extensive S0 was formed mostly as discrete particles rather than coatings on the chalcopyrite surface. Jarosite was only observed for dissolution at pH 2.0 with 4mM added Fe2+. Without Fe2+ addition, the initial dissolution rate was observed to be only correlated to H+ activity as aH+0.12(±0.01), indicating chalcopyrite dissolution was controlled via chemical oxidation of chalcopyrite by H+/O2. When reaction between chalcopyrite and Fe3+ predominated chalcopyrite dissolution (i.e. later stage of dissolution without Fe2+ addition), the dissolution rate was found to be positively correlated to the activities of Fe3+, as aFe3+1.54(±0.07), and H+, as aH+0.13(±0.05). When 4mM Fe2+ was added, no clear correlation was observed between the dissolution rate and the activities of either Fe3+or H+. It is proposed that the relative reactive surface area may not be proportional to that predicted by a shrinking sphere model as was assumed for derivation of the rate laws for the systems without added Fe2+, with the predicted rate being greater than the measured rate. Irrespective, it is clear that the addition of a relatively low Fe2+ concentration plays an important role in accelerating the copper dissolution rate at this Eh.

Original languageEnglish
Pages (from-to)188-202
Number of pages15
JournalGeochimica Et Cosmochimica Acta
Volume161
DOIs
Publication statusPublished - 2015

Fingerprint Dive into the research topics of 'Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV'. Together they form a unique fingerprint.

  • Cite this