TY - JOUR
T1 - L-arginine
T2 - A unique amino acid for improving depressed wound immune function following hemorrhage
AU - Angele, Martin K.
AU - Nitsch, Stefan M.
AU - Hatz, Rudolf A.
AU - Angele, Peter
AU - Hernandez-Richter, Thomas
AU - Wichmann, Mathias W.
AU - Chaudry, Irshad H.
AU - Schildberg, Friedrich W.
PY - 2002
Y1 - 2002
N2 - Objective: To determine whether L-arginine has any salutary effects on wound immune cell function following trauma-hemorrhage. Background: Depressed wound immune function contributes to an increased incidence of wound infections following hemorrhage. Although administration of L-arginine has been shown to restore depressed cell-mediated immune responses following hemorrhage potentially by maintaining organ blood flow, it remains unknown whether L-arginine has any salutary effects on the depressed local immune response at the wound site. Methods: Male mice were subjected to a midline laparotomy and polyvinyl sponges were implanted subcutaneously in the abdominal wound prior to hemorrhage (35 ± 5 mm Hg for 90 min and resuscitation) or sham operation. During resuscitation mice received 300 mg/kg body weight L-arginine or saline (vehicle). Sponges were harvested 24 h thereafter, wound fluid collected and wound immune cells cultured for 24 h in the presence of LPS. Pro- (IL-1β, IL-6) and anti-inflammatory (IL-10) cytokines were determined in the supernatants and the wound fluid. In addition, wounds were stained for IL-6 immunohistochemically. In a separate set of animals, skin and muscle blood flow was determined by microspheres. Results: The capacity of wound immune cells to release IL-1β and IL-6 in vitro was significantly depressed in hemorrhaged mice receiving vehicle. Administration of L-arginine, however, improved wound immune cell function. In contrast, in vivo the increased IL-6 release at the wound site was decreased in L-arginine-treated mice following hemorrhage. Moreover, IL-10 levels were significantly increased in the wound fluid in hemorrhaged animals receiving L-arginine compared to vehicle-treated mice. In addition, the depressed skin and muscle blood flow after hemorrhage was restored by L-arginine. Conclusions: Thus, L-arginine might improve local wound cell function by decreasing the inflammatory response at the wound site. Since L-arginine protected wound immune cell function this amino acid might represent a novel and useful adjunct to fluid resuscitation for decreasing wound complications following hemorrhage.
AB - Objective: To determine whether L-arginine has any salutary effects on wound immune cell function following trauma-hemorrhage. Background: Depressed wound immune function contributes to an increased incidence of wound infections following hemorrhage. Although administration of L-arginine has been shown to restore depressed cell-mediated immune responses following hemorrhage potentially by maintaining organ blood flow, it remains unknown whether L-arginine has any salutary effects on the depressed local immune response at the wound site. Methods: Male mice were subjected to a midline laparotomy and polyvinyl sponges were implanted subcutaneously in the abdominal wound prior to hemorrhage (35 ± 5 mm Hg for 90 min and resuscitation) or sham operation. During resuscitation mice received 300 mg/kg body weight L-arginine or saline (vehicle). Sponges were harvested 24 h thereafter, wound fluid collected and wound immune cells cultured for 24 h in the presence of LPS. Pro- (IL-1β, IL-6) and anti-inflammatory (IL-10) cytokines were determined in the supernatants and the wound fluid. In addition, wounds were stained for IL-6 immunohistochemically. In a separate set of animals, skin and muscle blood flow was determined by microspheres. Results: The capacity of wound immune cells to release IL-1β and IL-6 in vitro was significantly depressed in hemorrhaged mice receiving vehicle. Administration of L-arginine, however, improved wound immune cell function. In contrast, in vivo the increased IL-6 release at the wound site was decreased in L-arginine-treated mice following hemorrhage. Moreover, IL-10 levels were significantly increased in the wound fluid in hemorrhaged animals receiving L-arginine compared to vehicle-treated mice. In addition, the depressed skin and muscle blood flow after hemorrhage was restored by L-arginine. Conclusions: Thus, L-arginine might improve local wound cell function by decreasing the inflammatory response at the wound site. Since L-arginine protected wound immune cell function this amino acid might represent a novel and useful adjunct to fluid resuscitation for decreasing wound complications following hemorrhage.
KW - Hemorrhagic shock
KW - Immune depression
KW - Organ blood flow
KW - Wound exudate cells
KW - Wound infection
UR - http://www.scopus.com/inward/record.url?scp=0036184479&partnerID=8YFLogxK
U2 - 10.1159/000048888
DO - 10.1159/000048888
M3 - Article
C2 - 11867902
AN - SCOPUS:0036184479
VL - 34
SP - 53
EP - 60
JO - European Surgical Research
JF - European Surgical Research
SN - 0014-312X
IS - 1-2
ER -