TY - JOUR
T1 - Loss of responsiveness of circular smooth muscle cells from the guinea pig ileum is associated with changes in gap junction coupling
AU - Carbone, Simona
AU - Wattchow, David
AU - Spencer, Nicholas
AU - Brookes, Simon
PY - 2012
Y1 - 2012
N2 - Gap junction coupling and neuromuscular transmission to smooth muscle were studied in the first 4 h after preparations were set up in vitro. Intracellular recordings were made from smooth muscle cells of guinea pig ileum. Fast inhibitory junction potentials (IJPs) were small (1.3 ± 1.0 mV) in the first 30 min but increased significantly over the first 120 min to 15.8 ± 0.9 mV (n = 12, P < 0.001). Comparable increases in slow IJPs and excitatory junction potentials were also observed. During the same period, resting membrane potential depolarized from -58.8 ± 1.4 to -47.2 ± 0.4 mV (n = 12, P < 0.001). Input resistance, estimated by intracellular current injection, decreased in parallel (P < 0.05), and dye coupling, measured by intracellular injection of carboxyfluorescein, increased (P < 0.001). Input resistance was higher and dye coupling was less in longitudinal than circular smooth muscle cells. Gap junction blockers [carbenox-olone (100 μM), 18β-glycyrrhetinic acid (10 μM), and 2-amino-ethoxydiphenyl borate (50 μM)] hyperpolarized coupled circular smooth muscle cells, reduced the amplitude of fast and slow IJPs and excitatory junction potentials, increased input resistance, and reduced dye coupling. Local application of ATP (10 mM) mimicked IJPs and showed comparable increases in amplitude over the first 120 min; carbenoxolone and 2-aminoethoxydiphenyl borate significantly reduced ATP-evoked hyperpolarizations in coupled cells. In contrast, synaptic transmission between myenteric neurons was not suppressed during the first 30 min. Gap junction coupling between circular smooth muscle cells in isolated preparations was initially disrupted but recovered over the next 120 min to a steady level. This was associated with potent effects on neuromuscular transmission and responses to exogenous ATP.
AB - Gap junction coupling and neuromuscular transmission to smooth muscle were studied in the first 4 h after preparations were set up in vitro. Intracellular recordings were made from smooth muscle cells of guinea pig ileum. Fast inhibitory junction potentials (IJPs) were small (1.3 ± 1.0 mV) in the first 30 min but increased significantly over the first 120 min to 15.8 ± 0.9 mV (n = 12, P < 0.001). Comparable increases in slow IJPs and excitatory junction potentials were also observed. During the same period, resting membrane potential depolarized from -58.8 ± 1.4 to -47.2 ± 0.4 mV (n = 12, P < 0.001). Input resistance, estimated by intracellular current injection, decreased in parallel (P < 0.05), and dye coupling, measured by intracellular injection of carboxyfluorescein, increased (P < 0.001). Input resistance was higher and dye coupling was less in longitudinal than circular smooth muscle cells. Gap junction blockers [carbenox-olone (100 μM), 18β-glycyrrhetinic acid (10 μM), and 2-amino-ethoxydiphenyl borate (50 μM)] hyperpolarized coupled circular smooth muscle cells, reduced the amplitude of fast and slow IJPs and excitatory junction potentials, increased input resistance, and reduced dye coupling. Local application of ATP (10 mM) mimicked IJPs and showed comparable increases in amplitude over the first 120 min; carbenoxolone and 2-aminoethoxydiphenyl borate significantly reduced ATP-evoked hyperpolarizations in coupled cells. In contrast, synaptic transmission between myenteric neurons was not suppressed during the first 30 min. Gap junction coupling between circular smooth muscle cells in isolated preparations was initially disrupted but recovered over the next 120 min to a steady level. This was associated with potent effects on neuromuscular transmission and responses to exogenous ATP.
U2 - 10.1152/ajpgi.00376.2011
DO - 10.1152/ajpgi.00376.2011
M3 - Article
SN - 0193-1857
VL - 302
SP - G1434-G1444
JO - American Journal of Physiology: Gastrointestinal and Liver Physiology
JF - American Journal of Physiology: Gastrointestinal and Liver Physiology
IS - 12
ER -