TY - JOUR
T1 - Mapping recurrent mosaic copy number variation in human neurons
AU - Sun, Chen
AU - Kathuria, Kunal
AU - Emery, Sarah B.
AU - Kim, Byung Jun
AU - Burbulis, Ian E.
AU - Shin, Joo Heon
AU - Brain Somatic Mosaicism Network
AU - Gleeson, Joseph G.
AU - Breuss, Martin W.
AU - Yang, Xiaoxu
AU - Antaki, Danny
AU - Chung, Changuk
AU - Averbuj, Dan
AU - Ball, Laurel L.
AU - Roy, Subhojit
AU - Weinberger, Daniel
AU - Jaffe, Andrew
AU - Paquola, Apua
AU - Erwin, Jennifer
AU - Straub, Richard
AU - Narurkar, Rujuta
AU - Mathern, Gary
AU - Walsh, Christopher A.
AU - Lee, Alice
AU - Huang, August Yue
AU - D’Gama, Alissa
AU - Dias, Caroline
AU - Maury, Eduardo
AU - Ganz, Javier
AU - Lodato, Michael
AU - Miller, Michael
AU - Li, Pengpeng
AU - Rodin, Rachel
AU - Borges-Monroy, Rebeca
AU - Hill, Robert
AU - Bizzotto, Sara
AU - Khoshkhoo, Sattar
AU - Kim, Sonia
AU - Zhou, Zinan
AU - Park, Peter J.
AU - Barton, Alison
AU - Galor, Alon
AU - Chu, Chong
AU - Bohrson, Craig
AU - Gulhan, Doga
AU - Lim, Elaine
AU - Lim, Euncheon
AU - Melloni, Giorgio
AU - Cortes, Isidro
AU - Lee, Jake
AU - Luquette, Joe
AU - Yang, Lixing
AU - Sherman, Maxwell
AU - Coulter, Michael
AU - Kwon, Minseok
AU - Lee, Semin
AU - Lee, Soo
AU - Viswanadham, Vinary
AU - Dou, Yanmei
AU - Chess, Andrew J.
AU - Jones, Attila
AU - Rosenbluh, Chaggai
AU - Akbarian, Schahram
AU - Langmead, Ben
AU - Thorpe, Jeremy
AU - Cho, Sean
AU - Abyzov, Alexej
AU - Bae, Taejeong
AU - Jang, Yeongjun
AU - Wang, Yifan
AU - Molitor, Cindy
AU - Peters, Mette
AU - Gage, Fred H.
AU - Wang, Meiyan
AU - Reed, Patrick
AU - Linker, Sara
AU - Urban, Alexander
AU - Zhou, Bo
AU - Pattni, Reenal
AU - Zhu, Xiaowei
AU - Amero, Aitor Serres
AU - Juan, David
AU - Povolotskaya, Inna
AU - Lobon, Irene
AU - Moruno, Manuel Solis
AU - Perez, Raquel Garcia
AU - Marques-Bonet, Tomas
AU - Soriano, Eduardo
AU - Moran, John V.
AU - Flasch, Diane A.
AU - Frisbie, Trenton J.
AU - Kopera, Huira C.
AU - Moldovan, John B.
AU - Kwan, Kenneth Y.
AU - Mills, Ryan E.
AU - Zhou, Weichen
AU - Zhao, Xuefang
AU - Ratan, Aakrosh
AU - Vaccarino, Flora M.
AU - Cherskov, Adriana
AU - Jourdon, Alexandre
AU - Fasching, Liana
AU - Sestan, Nenad
AU - Pochareddy, Sirisha
AU - Scuder, Soraya
AU - Weinberger, Daniel R.
AU - Moran, John V.
AU - Kidd, Jeffrey M.
AU - Mills, Ryan E.
AU - McConnell, Michael J.
PY - 2024/12
Y1 - 2024/12
N2 - When somatic cells acquire complex karyotypes, they often are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, “CNV neurons”), but previous analyses of CNV neurons are limited by relatively small sample sizes. Here, we develop an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We apply this approach to 2,125 frontal cortical neurons from a neurotypical human brain. SCOVAL identifies 226 CNV neurons, which include a subclass of 65 CNV neurons with highly aberrant karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we find that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contain fewer, but longer, genes.
AB - When somatic cells acquire complex karyotypes, they often are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, “CNV neurons”), but previous analyses of CNV neurons are limited by relatively small sample sizes. Here, we develop an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We apply this approach to 2,125 frontal cortical neurons from a neurotypical human brain. SCOVAL identifies 226 CNV neurons, which include a subclass of 65 CNV neurons with highly aberrant karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we find that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contain fewer, but longer, genes.
KW - mosaic variants
KW - somatic cells
KW - karyotypes
KW - CNVs
KW - CNV neurons
KW - human neurons
UR - http://www.scopus.com/inward/record.url?scp=85193614955&partnerID=8YFLogxK
U2 - 10.1038/s41467-024-48392-0
DO - 10.1038/s41467-024-48392-0
M3 - Article
C2 - 38760338
AN - SCOPUS:85193614955
SN - 2041-1723
VL - 15
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 4220
ER -