Abstract
This investigation sought to quantify the level of measurement agreement in system force, velocity and power values derived across three commonly applied assessment techniques during a countermovement jump (CMJ). Twenty-five male national representative athletes completed three CMJs under unloaded (0%1RM) and loaded (40%1RM) jump conditions. Associated values of force, velocity and power were captured simultaneously from either a linear optical encoder (LOE) or force plate (FP) and then compared to the gold-standard reference values derived from a combined force plate and three-dimensional motion capture system (FPMC). The LOE significantly (p < 0.001) overestimated and failed to meet the minimum level of relatedness (<0.80) for measures of peak velocity, peak force, peak power and mean power across both conditions compared to the FPMC reference values. A reduction in measurement dispersion and bias was, however, evident during the loaded condition. The FP significantly (p < 0.05) underestimated mean and peak power across both conditions, yet measurement bias and dispersion remained consistent. These findings highlight a disparity in measurement agreement in force, velocity and power values across alternative assessment techniques and loads. Such variance in measurement agreement will uniquely alter derived force-velocity profiles, and thus the prescription of training loads to maximise system power during unrestricted CMJs.
Original language | English |
---|---|
Article number | 1 |
Pages (from-to) | 226-238 |
Number of pages | 13 |
Journal | Sports Biomechanics |
Volume | 21 |
Issue number | 2 |
Early online date | 1 Oct 2019 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- force plate
- force-velocity relationship
- linear optical encoder
- load-power relationship
- Motion capture