Mechanisms contributing to the response of upper-airway muscles to changes in airway pressure

Jayne C. Carberry, Hanna A. Hensen, Lauren P. Fisher, Julian P. Saboisky, Jane E. Butler, Simon Gandevia, Danny J. Eckert

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)

Abstract

This study assessed the effects of inhaled lignocaine to reduce upper airway surface mechanoreceptor activity on 1) basal genioglossus and tensor palatini EMG, 2) genioglossus reflex responses to large pulses (∼10 cmH2O) of negative airway pressure, and 3) upper airway collapsibility in 15 awake individuals. Genioglossus and tensor palatini muscle EMG and airway pressures were recorded during quiet nasal breathing and during brief pulses (250 ms) of negative upper-airway pressure. Lignocaine reduced peak inspiratory (5.6 ± 1.5 vs. 3.8 ± 1.1% maximum; mean ± SE, P < 0.01) and tonic (2.8 ± 0.8 vs. 2.1 ± 0.7% maximum; P < 0.05) genioglossus EMG during quiet breathing but had no effect on tensor palatini EMG (5.0 ± 0.8 vs. 5.0 ± 0.5% maximum; P = 0.97). Genioglossus reflex excitation to negative pressure pulses decreased after anesthesia (60.9 ± 20.7 vs. 23.6 ± 5.2 μV; P < 0.05), but not when expressed as a percentage of the immediate prestimulus baseline. Reflex excitation was closely related to the change in baseline EMG following lignocaine (r2 = 0.98). A short-latency genioglossus reflex to rapid increases from negative to atmospheric pressure was also observed. The upper airway collapsibility index (%difference) between nadir choanal and epiglottic pressure increased after lignocaine (17.8 ± 3.7 vs. 28.8 ± 7.5%; P <0.05). These findings indicate that surface receptors modulate genioglossus but not tensor palatini activity during quiet breathing. However, removal of input from surface mechanoreceptors has minimal effect on genioglossus reflex responses to large (±10 cmH2O), sudden changes in airway pressure. Changes in pressure rather than negative pressure per se can elicit genioglossus reflex responses. These findings challenge previous views and have important implications for upper airway muscle control.

Original languageEnglish
Pages (from-to)1221-1228
Number of pages8
JournalJournal of Applied Physiology
Volume118
Issue number10
DOIs
Publication statusPublished - 15 May 2015

Keywords

  • Genioglossus
  • Mechanoreceptors
  • Motor impairment
  • Negative pressure reflex
  • Tensor palatini

Fingerprint

Dive into the research topics of 'Mechanisms contributing to the response of upper-airway muscles to changes in airway pressure'. Together they form a unique fingerprint.

Cite this