Method for Automated Extraction and Purification of Nucleic Acids and Its Implementation in Microfluidic System

D. Mamaev, Dmitriy Khodakov, E. Dementieva, I. Filatov, D. Yurasov, A. Cherepanov, V. Vasiliskov, O. Smoldovskaya, D. Zimenkov, D. Gryadunov, V. Mikhailovich, A. Zasedatelev

    Research output: Contribution to journalArticle

    4 Citations (Scopus)

    Abstract

    A method and a microfluidic device for automated extraction and purification of nucleic acids from biological samples have been developed. The method involves disruption of bacterial cells and/or viral particles by combining enzymatic and chemical lysis procedures followed by solid-phase sorbent extraction and purification of nucleic acids. The procedure is carried out in an automated mode in a microfluidic module isolated from the outside environment, which minimizes contact of the researcher with potentially infectious samples and, consequently, decreases the risk of laboratory-acquired infections. The module includes reservoirs with lyophilized components for lysis and washing buffers; a microcolumn with a solid-phase sorbent; reservoirs containing water, ethanol, and water-ethanol mixtures for dissolving freeze-dried buffer components, washing the microcolumn, and eluting of nucleic acids; and microchannels and valves needed for directing fluids inside the module. The microfluidic module is placed into the control unit that delivers pressure, executes heating, mixing of reagents, and movement of solutions within the microfluidic module. The microfluidic system performs extraction and purification of nucleic acids with high efficiency in 40 min, and nucleic acids extracted can be directly used in PCR reaction and microarray assays.

    Original languageEnglish
    Pages (from-to)211-220
    Number of pages10
    JournalApplied Biochemistry and Microbiology
    Volume47
    Issue number2
    DOIs
    Publication statusPublished - Mar 2011

    Keywords

    • biochips
    • device for automated extraction and purification of nucleic acids
    • disposable microfluidic module
    • nucleic acids

    Fingerprint Dive into the research topics of 'Method for Automated Extraction and Purification of Nucleic Acids and Its Implementation in Microfluidic System'. Together they form a unique fingerprint.

    Cite this