TY - JOUR
T1 - Microbial alignment in flow changes ocean light climate
AU - Marcos, null
AU - Seymour, Justin
AU - Luhar, Mitul
AU - Durham, William
AU - Mitchell, James
AU - Macke, Andreas
AU - Stocker, Roman
PY - 2011/3/8
Y1 - 2011/3/8
N2 - The growth of microbial cultures in the laboratory often is assessed informally with a quick flick of the wrist: dense suspensions of microorganisms produce translucent "swirls" when agitated. Here, we rationalize the mechanism behind this phenomenon and show that the same process may affect the propagation of light through the upper ocean. Analogous to the shaken test tubes, the ocean can be characterized by intense fluid motion and abundant microorganisms. We demonstrate that the swirl patterns arise when elongated microorganisms align preferentially in the direction of fluid flow and alter light scattering. Using a combination of experiments and mathematical modeling, we find that this phenomenon can be recurrent under typical marine conditions. Moderate shear rates (0.1 s-1) can increase optical backscattering of natural microbial assemblages by more than 20%, and even small shear rates (0.001 s-1) can increase backscattering from blooms of large phytoplankton by more than 30%. These results imply that fluid flow, currently neglected in models of marine optics, may exert an important control on light propagation, influencing rates of global carbon fixation and how we estimate these rates via remote sensing.
AB - The growth of microbial cultures in the laboratory often is assessed informally with a quick flick of the wrist: dense suspensions of microorganisms produce translucent "swirls" when agitated. Here, we rationalize the mechanism behind this phenomenon and show that the same process may affect the propagation of light through the upper ocean. Analogous to the shaken test tubes, the ocean can be characterized by intense fluid motion and abundant microorganisms. We demonstrate that the swirl patterns arise when elongated microorganisms align preferentially in the direction of fluid flow and alter light scattering. Using a combination of experiments and mathematical modeling, we find that this phenomenon can be recurrent under typical marine conditions. Moderate shear rates (0.1 s-1) can increase optical backscattering of natural microbial assemblages by more than 20%, and even small shear rates (0.001 s-1) can increase backscattering from blooms of large phytoplankton by more than 30%. These results imply that fluid flow, currently neglected in models of marine optics, may exert an important control on light propagation, influencing rates of global carbon fixation and how we estimate these rates via remote sensing.
KW - Plankton
KW - Rheoscopic
UR - http://www.scopus.com/inward/record.url?scp=79952775155&partnerID=8YFLogxK
U2 - 10.1073/pnas.1014576108
DO - 10.1073/pnas.1014576108
M3 - Article
VL - 108
SP - 3860
EP - 3864
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 10
ER -