Molecular Scale Characterization of the Titania-Dye-Solvent Interface in Dye-Sensitized Solar Cells

Philip Marquet, Gunther Andersson, Alan Snedden, Lars Kloo, Rob Atkin

    Research output: Contribution to journalArticlepeer-review

    21 Citations (Scopus)

    Abstract

    Charge separation at the dye/titania interface in dye sensitized solar cells is strongly influenced by the thickness and homogeneity of the sensitizing dye layer, as this controls the potential drop across the interface, and the probability of an excited electron being transferred from the dye to the titania. In this study we use atomic force microscopy and the depth profiling method neutral impact collision ion scattering spectroscopy (NICISS) to investigate the thickness and homogeneity of N719 dye adsorbed to titania before and after rinsing with pure acetonitrile. Both experimental methods show that the dye layers are closed but inhomogeneous. Inhomogeneity is more pronounced for unrinsed samples.

    Original languageEnglish
    Pages (from-to)9612-9616
    Number of pages5
    JournalLangmuir
    Volume26
    Issue number12
    DOIs
    Publication statusPublished - 15 Jun 2010

    Fingerprint Dive into the research topics of 'Molecular Scale Characterization of the Titania-Dye-Solvent Interface in Dye-Sensitized Solar Cells'. Together they form a unique fingerprint.

    Cite this