TY - GEN
T1 - Multi-spectral stereo image matching using mutual information
AU - Fookes, C.
AU - Maeder, A.
AU - Sridharan, S.
AU - Cook, J.
PY - 2004/12/1
Y1 - 2004/12/1
N2 - Mutual information (MI) has shown promise as an effective stereo matching measure for images affected by radiometric distortion. This is due to the robustness of MI against changes in illumination. However, MI-based approaches are particularly prone to the generation of false matches due to the small statistical power of the matching windows. Consequently, most previous MI approaches utilise large matching windows which smooth the estimated disparity field. This paper proposes extensions to MI-based stereo matching in order to increase the robustness of the algorithm. Firstly, prior probabilities are incorporated into the MI measure in order to considerably increase the statistical power of the matching windows. These prior probabilities, which are calculated from the global joint histogram between the stereo pair, are tuned to a two level hierarchical approach. A 2D match surface, in which the match score is computed for every possible combination of template and matching window, is also utilised. This enforces left-right consistency and uniqueness constraints. These additions to MI-based stereo matching significantly enhance the algorithm's ability to detect correct matches while decreasing computation time and improving the accuracy. Results show that the MI measure does not perform quite as well for standard stereo pairs when compared to traditional areabased metrics. However, the MI approach is far superior when matching across multi-spectra stereo pairs.
AB - Mutual information (MI) has shown promise as an effective stereo matching measure for images affected by radiometric distortion. This is due to the robustness of MI against changes in illumination. However, MI-based approaches are particularly prone to the generation of false matches due to the small statistical power of the matching windows. Consequently, most previous MI approaches utilise large matching windows which smooth the estimated disparity field. This paper proposes extensions to MI-based stereo matching in order to increase the robustness of the algorithm. Firstly, prior probabilities are incorporated into the MI measure in order to considerably increase the statistical power of the matching windows. These prior probabilities, which are calculated from the global joint histogram between the stereo pair, are tuned to a two level hierarchical approach. A 2D match surface, in which the match score is computed for every possible combination of template and matching window, is also utilised. This enforces left-right consistency and uniqueness constraints. These additions to MI-based stereo matching significantly enhance the algorithm's ability to detect correct matches while decreasing computation time and improving the accuracy. Results show that the MI measure does not perform quite as well for standard stereo pairs when compared to traditional areabased metrics. However, the MI approach is far superior when matching across multi-spectra stereo pairs.
UR - http://www.scopus.com/inward/record.url?scp=16244399210&partnerID=8YFLogxK
U2 - 10.1109/TDPVT.2004.1335420
DO - 10.1109/TDPVT.2004.1335420
M3 - Conference contribution
AN - SCOPUS:16244399210
SN - 0769522238
SN - 9780769522234
T3 - Proceedings - 2nd International Symposium on 3D Data Processing, Visualization, and Transmission. 3DPVT 2004
SP - 961
EP - 968
BT - Proceedings - 2nd International Symposium on 3D Data Processing, Visualization, and Transmission, 3DPVT 2004
A2 - Aloimonos, Y.
A2 - Taubin, G.
T2 - Proceedings - 2nd International Symposium on 3D Data Processing, Visualization, and Transmission. 3DPVT 2004
Y2 - 6 September 2004 through 9 September 2004
ER -