Neural and cognitive correlates of performance in dynamic multi-modal settings

Chloe A. Dziego, Ina Bornkessel-Schlesewsky, Sophie Jano, Alex Chatburn, Matthias Schlesewsky, Maarten A. Immink, Ruchi Sinha, Jessica Irons, Megan Schmitt, Steph Chen, Zachariah R. Cross

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The endeavour to understand human cognition has largely relied upon investigation of task-related brain activity. However, resting-state brain activity can also offer insights into individual information processing and performance capabilities. Previous research has identified electroencephalographic resting-state characteristics (most prominently: the individual alpha frequency; IAF) that predict cognitive function. However, it has largely overlooked a second component of electrophysiological signals: aperiodic 1/ƒ activity. The current study examined how both oscillatory and aperiodic resting-state EEG measures, alongside traditional cognitive tests, can predict performance in a dynamic and complex, semi-naturalistic cognitive task. Participants’ resting-state EEG was recorded prior to engaging in a Target Motion Analysis (TMA) task in a simulated submarine control room environment (CRUSE), which required participants to integrate dynamically changing information over time. We demonstrated that the relationship between IAF and cognitive performance extends from simple cognitive tasks (e.g., digit span) to complex, dynamic measures of information processing. Further, our results showed that individual 1/ƒ parameters (slope and intercept) differentially predicted performance across practice and testing sessions, whereby flatter slopes and higher intercepts were associated with improved performance during learning. In addition to the EEG predictors, we demonstrate a link between cognitive skills most closely related to the TMA task (i.e., spatial imagery) and subsequent performance. Overall, the current study highlights (1) how resting-state metrics – both oscillatory and aperiodic - have the potential to index higher-order cognitive capacity, while (2) emphasising the importance of examining these electrophysiological components within more dynamic settings and over time.

Original languageEnglish
Article number108483
Number of pages14
JournalNeuropsychologia
Volume180
Early online date10 Jan 2023
DOIs
Publication statusPublished - 10 Feb 2023

Keywords

  • Aperiodic 1/ƒ activity
  • Cognitive performance
  • EEG
  • Individual alpha frequency
  • Individual differences
  • Resting state

Fingerprint

Dive into the research topics of 'Neural and cognitive correlates of performance in dynamic multi-modal settings'. Together they form a unique fingerprint.

Cite this