Neural-mechanical coupling of breathing in REM sleep

C. A. Smith, K. S. Henderson, L. Xi, C. M. Chow, P. R. Eastwood, J. A. Dempsey

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

During rapid-eye-movement (REM) sleep the ventilatory response to airway occlusion is reduced. Possible mechanisms are reduced chemosensitivity, mechanical impairment of the chest wall secondary to the atonia of REM sleep, or phasic REM events that interrupt or fractionate ongoing diaphragm electromyogram (EMG) activity. To differentiate between these possibilities, we studied three chronically instrumented dogs before, during, and after 15- 20 s of airway occlusion during non-REM (NREM) and phasic REM sleep. We found that 1) for a given inspiratory time the integrated diaphragm EMG (∫Di) was similar or reduced in REM sleep relative to NREM sleep; 2) for a given ∫Di in response to airway occlusion and the hyperpnea following occlusion, the mechanical output (flow or pressure) was similar or reduced during REM sleep relative to NREM sleep; 3) for comparable durations of airway occlusion the ∫Di and integrated inspiratory tracheal pressure tended to be smaller and more variable in ItEM than in NREM sleep, and 4) significant fractionations (caused visible changes in tracheal pressure) of the diaphragm EMG during airway occlusion in REM sleep occurred in ~40% of breathing efforts. Thus reduced and/or erratic mechanical output during and after airway occlusion in REM sleep in terms of flow rate, tidal volume, and/or pressure generation is attributable largely to reduced neural activity of the diaphragm, which in turn is likely attributable to REM effects, causing reduced chemosensitivity at the level of the peripheral chemoreceptors or, more likely, at the central integrator. Chest wall distortion secondary to the atonia of REM sleep may contribute to the reduced mechanical output following airway occlusion when ventilatory drive is highest.

Original languageEnglish
Pages (from-to)1923-1932
Number of pages10
JournalJournal of Applied Physiology
Volume83
Issue number6
DOIs
Publication statusPublished - Dec 1997
Externally publishedYes

Bibliographical note

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Keywords

  • Dogs
  • Non-rapid-eye-movement sleep
  • Obstructive apnea
  • Rapid-eye-movement sleep
  • Sleep-disordered breathing

Fingerprint Dive into the research topics of 'Neural-mechanical coupling of breathing in REM sleep'. Together they form a unique fingerprint.

Cite this