Neuromechanical factors involved in the formation and propulsion of fecal pellets in the guinea-pig colon.

    Research output: Contribution to journalArticle

    31 Citations (Scopus)

    Abstract

    Background: The neuromechanical processes involved in the formation and propulsion of fecal pellets remain incompletely understood. Methods: We analyzed motor patterns in isolated segments of the guinea-pig proximal and distal colon, using video imaging, during oral infusion of liquid, viscous material, or solid pellets. Key Results: Colonic migrating motor complexes (CMMCs) in the proximal colon divided liquid or natural semisolid contents into elongated shallow boluses. At the colonic flexure these boluses were formed into shorter, pellet-shaped boluses. In the non-distended distal colon, spontaneous CMMCs produced small dilations. Both high- and low-viscosity infusions evoked a distinct motor pattern that produced pellet-shaped boluses. These were propelled at speeds proportional to their surface area. Solid pellets were propelled at a speed that increased with diameter, to a maximum that matched the diameter of natural pellets. Pellet speed was reduced by increasing resistive load. Tetrodotoxin blocked all propulsion. Hexamethonium blocked normal motor patterns, leaving irregular propagating contractions, indicating the existence of neural pathways that did not require nicotinic transmission. Conclusions & Inferences: Colonic migrating motor complexes are responsible for the slow propulsion of the soft fecal content in the proximal colon, while the formation of pellets at the colonic flexure involves a content-dependent mechanism in combination with content-independent spontaneous CMMCs. Bolus size and consistency affects propulsion speed suggesting that propulsion is not a simple reflex but rather a more complex process involving an adaptable neuromechanical loop. This study describes the motor patterns responsible for the formation and propulsion of pellets in the Guinea-Pig colon. Our data indicate that bolus size and consistency affects propulsion speed suggesting that propulsion is not a simple reflex but rather a more complex process involving an adaptable neuromechanical loop.

    Original languageEnglish
    Pages (from-to)1466-1477
    Number of pages12
    JournalNeurogastroenterology and Motility
    Volume27
    Issue number10
    DOIs
    Publication statusPublished - 2015

    Fingerprint Dive into the research topics of 'Neuromechanical factors involved in the formation and propulsion of fecal pellets in the guinea-pig colon.'. Together they form a unique fingerprint.

  • Cite this