New Insight into the Formation of Structural Defects in Poly(Vinyl Chloride)

Jindra Purmova, Kim F.D. Pauwels, Wendy Van Zoelen, Eltjo J. Vorenkamp, Arend J. Scheuten, Michelle L. Coote

Research output: Contribution to journalArticlepeer-review

50 Citations (Scopus)

Abstract

The monomer conversion dependence of the formation of the various types of defect structures in radical suspension polymerization of vinyl chloride was examined via both 1H and 13C NMR spectrometry. The rate coefficients for model propagation and intra- and intermolecular hydrogen abstraction reactions were obtained via high-level ab initio molecular orbital calculations. An enormous increase in the formation of both branched and internal unsaturated structures was observed at conversions above 85%, and this is mirrored by a sudden decrease in stability of the resulting PVC polymer. Above this threshold-conversion, the monomer is depleted from the polymer-rich phase, and the propagation rate is thus substantially reduced, thereby allowing the chain-transfer processes to compete more effectively. In contrast to the other defects, the chloroallylic end groups were found to decrease at high conversions. On the basis of the theoretical and experimental data obtained in this study, this decrease was attributed to copolymerization and abstraction reactions that are expected to be favored at high monomer conversions. Finally, a surprising increase in the concentration of the methyl branches was reported. Although a definitive explanation for this behavior is yet to be obtained, the involvement of transfer reactions of an intra- or intermolecular nature seems likely, and (in the latter case) these could lead to the presence of tertiary chlorine in these defects.

Original languageEnglish
Pages (from-to)6352-6366
Number of pages15
JournalMacromolecules
Volume38
Issue number15
DOIs
Publication statusPublished - 26 Jul 2005
Externally publishedYes

Fingerprint

Dive into the research topics of 'New Insight into the Formation of Structural Defects in Poly(Vinyl Chloride)'. Together they form a unique fingerprint.

Cite this