New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan

Fernando F. Garberoglio, Sebastián Apesteguía, Tiago R. Simões, Alessandro Palci, Raúl O. Gómez, Randall L. Nydam, Hans C.E. Larsson, Michael S.Y. Lee, Michael W. Caldwell

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Snakes represent one of the most dramatic examples of the evolutionary versatility of the vertebrate body plan, including body elongation, limb loss, and skull kinesis. However, understanding the earliest steps toward the acquisition of these remarkable adaptations is hampered by the very limited fossil record of early snakes. Here, we shed light on the acquisition of the snake body plan using micro-computed tomography scans of the first three-dimensionally preserved skulls of the legged snake Najash and a new phylogenetic hypothesis. These findings elucidate the initial sequence of bone loss that gave origin to the modern snake skull. Morphological and molecular analyses including the new cranial data provide robust support for an extensive basal radiation of early snakes with hindlimbs and pelves, demonstrating that this intermediate morphology was not merely a transient phase between limbed and limbless body plans.

Original languageEnglish
Article numbereaax5833
Number of pages8
JournalScience Advances
Volume5
Issue number11
DOIs
Publication statusPublished - 20 Nov 2019

Bibliographical note

Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Keywords

  • Snakes
  • vertebrate
  • evolution
  • tomography scans
  • Najash

Fingerprint Dive into the research topics of 'New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan'. Together they form a unique fingerprint.

Cite this