TY - JOUR
T1 - Nitrogen addition and defoliation alter belowground carbon allocation with consequences for plant nitrogen uptake and soil organic carbon decomposition
AU - Bicharanloo, Bahareh
AU - Bagheri Shirvan, Milad
AU - Cavagnaro, Timothy R.
AU - Keitel, Claudia
AU - Dijkstra, Feike A.
PY - 2022/11/10
Y1 - 2022/11/10
N2 - Grassland plants allocate photosynthetically fixed carbon (C) belowground to root biomass and rhizodeposition, but also to support arbuscular mycorrhizal fungi (AMF). These C allocation pathways could increase nutrient scavenging, but also mining of nutrients through enhanced organic matter decomposition. While important for grassland ecosystem functioning, methodological constraints have limited our ability to measure these processes under field conditions. We used 13CO2 and 15N pulse labelling methods to examine belowground C allocation to root biomass production, rhizodeposition and AMF colonisation during peak plant growth in a grassland field experiment after three years of N fertilisation (0 and 40 kg N ha−1 year−1) and defoliation frequency treatments (“low” and “high”, with 3–4 and 6–8 simulated grazing events per year, mimicking moderate and intense grazing, respectively). Moreover, we quantified the consequences for plant nitrogen (N) uptake and decomposition of soil organic C (SOC). Nitrogen fertilisation increased rhizodeposition and AMF colonisation (by 63 % and 54 %), but reduced root biomass (by 25 %). With high defoliation frequency, AMF colonisation increased (by 60 %), but both root biomass and rhizodeposition declined (by 35 % and 58 %). Plant N uptake was highest without N fertilisation and low defoliation frequency, and positively related to root biomass and the number of root tips. Therefore, when N supply is low and the capacity to produce C through photosynthesis is high, belowground C allocation to root production and associated root tips was important to scavenge for N in the soil. In contrast, the strong positive relationship between the rate of rhizodeposition and SOC decomposition, suggests that rhizodeposition may help plants to mine for nutrients locked in SOC. Taken together, the results of this study suggest that belowground C allocation pathways affected by N fertilisation and defoliation frequency affect plant N scavenging and mining with important consequences for long-term grassland C dynamics.
AB - Grassland plants allocate photosynthetically fixed carbon (C) belowground to root biomass and rhizodeposition, but also to support arbuscular mycorrhizal fungi (AMF). These C allocation pathways could increase nutrient scavenging, but also mining of nutrients through enhanced organic matter decomposition. While important for grassland ecosystem functioning, methodological constraints have limited our ability to measure these processes under field conditions. We used 13CO2 and 15N pulse labelling methods to examine belowground C allocation to root biomass production, rhizodeposition and AMF colonisation during peak plant growth in a grassland field experiment after three years of N fertilisation (0 and 40 kg N ha−1 year−1) and defoliation frequency treatments (“low” and “high”, with 3–4 and 6–8 simulated grazing events per year, mimicking moderate and intense grazing, respectively). Moreover, we quantified the consequences for plant nitrogen (N) uptake and decomposition of soil organic C (SOC). Nitrogen fertilisation increased rhizodeposition and AMF colonisation (by 63 % and 54 %), but reduced root biomass (by 25 %). With high defoliation frequency, AMF colonisation increased (by 60 %), but both root biomass and rhizodeposition declined (by 35 % and 58 %). Plant N uptake was highest without N fertilisation and low defoliation frequency, and positively related to root biomass and the number of root tips. Therefore, when N supply is low and the capacity to produce C through photosynthesis is high, belowground C allocation to root production and associated root tips was important to scavenge for N in the soil. In contrast, the strong positive relationship between the rate of rhizodeposition and SOC decomposition, suggests that rhizodeposition may help plants to mine for nutrients locked in SOC. Taken together, the results of this study suggest that belowground C allocation pathways affected by N fertilisation and defoliation frequency affect plant N scavenging and mining with important consequences for long-term grassland C dynamics.
KW - Microbial mining
KW - Mycorrhiza
KW - Nutrient cycling
KW - Pulse labelling
KW - Respiration
KW - Rhizodeposition
UR - http://www.scopus.com/inward/record.url?scp=85134800243&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/ARC/DP190102262
U2 - 10.1016/j.scitotenv.2022.157430
DO - 10.1016/j.scitotenv.2022.157430
M3 - Article
C2 - 35863579
AN - SCOPUS:85134800243
SN - 0048-9697
VL - 846
JO - Science of The Total Environment
JF - Science of The Total Environment
M1 - 157430
ER -