Noncommutative boyd interpolation theorems revisited

Peter Dodds, Theresa Dodds

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

If E is a fully symmetric space on (0, ∞), we show that the corresponding noncommutative space E(τ) of τ-measurable operators is an interpolation space for the noncommutative pair (L1(τ), Lq(τ)) provided 1 ≤ qE < q, where qE is the upper Boyd index.

Original languageEnglish
Title of host publicationTrends in Mathematics
EditorsGerard Buskes, Peter Dodds, Fedor Sukochev, Anthony Wickstead, Marcel de Jeu, Anton Schep, Jan van Neerven
Place of PublicationCham
PublisherSpringer International Publishing
Chapter7
Pages131-152
Number of pages22
ISBN (Electronic)9783030108502
ISBN (Print) 9783030108496
DOIs
Publication statusPublished - 2019

Publication series

NameTrends in Mathematics
ISSN (Print)2297-0215
ISSN (Electronic)2297-024X

Keywords

  • Measurable operators
  • Noncommutative interpolation
  • Noncommutative symmetric spaces
  • Operators of weak type

Fingerprint Dive into the research topics of 'Noncommutative boyd interpolation theorems revisited'. Together they form a unique fingerprint.

Cite this