TY - JOUR
T1 - Organic amendments as phosphorus fertilisers
T2 - Chemical analyses, biological processes and plant P uptake
AU - Mackay, J.E.
AU - Macdonald, L.M.
AU - Smernik, R.J.
AU - Cavagnaro, T.R.
PY - 2017/4
Y1 - 2017/4
N2 - As phosphorus (P) fertilisers become increasingly expensive there is a need to find innovative ways to supply crops with P. Organic amendments (OA) can contain high concentrations of total P, although the P is present in various forms. We aimed to determine the forms of P and carbon (C) in a range of OA and the effect of these OA on soil microbial biomass, P release, arbuscular mycorrhizal (AM) colonisation, and plant P uptake. Four OA were investigated: two chicken litters (CHK-STR and CHK-SD, one with straw bedding and one with sawdust bedding), a pig litter (PIG-STR) and a municipal waste compost (COMP). An incubation experiment and a plant growth experiment were conducted in which OA and INORG-P were supplied at 15 mg P kg−1 soil and a zero P control was included. All OA had high P concentrations and did not result in an increase in the soil microbial biomass C. There were few temporal changes in available P throughout the incubation experiment suggesting that solubilisation and/or mineralisation of P occurred at a similar rate as conversion of P to unusable forms. Of the OA, PIG-STR had the largest proportion of orthophosphate P and bicarbonate extractable P, and it provided the most P to plants. While CHK-STR had a higher proportion of orthophosphate P and bicarbonate extractable P than CHK-SD, both CHK-STR and CHK-SD provided plants with similar amounts of P. This could be because CHK-SD had a higher proportion of phytate, which can be rapidly mineralised to orthophosphate, and/or because plants in the CHK-SD had higher rates of arbuscular mycorrhizal (AM) colonisation compared with CHK-STR. This study provides new insights into plant and microbial responses to OA which could help in the development of sustainable food production systems.
AB - As phosphorus (P) fertilisers become increasingly expensive there is a need to find innovative ways to supply crops with P. Organic amendments (OA) can contain high concentrations of total P, although the P is present in various forms. We aimed to determine the forms of P and carbon (C) in a range of OA and the effect of these OA on soil microbial biomass, P release, arbuscular mycorrhizal (AM) colonisation, and plant P uptake. Four OA were investigated: two chicken litters (CHK-STR and CHK-SD, one with straw bedding and one with sawdust bedding), a pig litter (PIG-STR) and a municipal waste compost (COMP). An incubation experiment and a plant growth experiment were conducted in which OA and INORG-P were supplied at 15 mg P kg−1 soil and a zero P control was included. All OA had high P concentrations and did not result in an increase in the soil microbial biomass C. There were few temporal changes in available P throughout the incubation experiment suggesting that solubilisation and/or mineralisation of P occurred at a similar rate as conversion of P to unusable forms. Of the OA, PIG-STR had the largest proportion of orthophosphate P and bicarbonate extractable P, and it provided the most P to plants. While CHK-STR had a higher proportion of orthophosphate P and bicarbonate extractable P than CHK-SD, both CHK-STR and CHK-SD provided plants with similar amounts of P. This could be because CHK-SD had a higher proportion of phytate, which can be rapidly mineralised to orthophosphate, and/or because plants in the CHK-SD had higher rates of arbuscular mycorrhizal (AM) colonisation compared with CHK-STR. This study provides new insights into plant and microbial responses to OA which could help in the development of sustainable food production systems.
KW - Diffusive gradients in thin films (DGT)
KW - Microbial biomass carbon
KW - Nuclear magnetic resonance spectroscopy
KW - Organic amendments
KW - Phosphorus
KW - Wheat
UR - http://www.scopus.com/inward/record.url?scp=85007500084&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/ARC/FT120100463
U2 - 10.1016/j.soilbio.2016.12.008
DO - 10.1016/j.soilbio.2016.12.008
M3 - Article
AN - SCOPUS:85007500084
SN - 0038-0717
VL - 107
SP - 50
EP - 59
JO - Soil Biology and Biochemistry
JF - Soil Biology and Biochemistry
ER -