TY - JOUR
T1 - Ovariectomy of adult rats leads to increased expression of astrocytic basic fibroblast growth factor in the ventral tegmental area and in dopaminergic projection regions of the entorhinal and prefrontal cortex
AU - Flores, Cecilia
AU - Salmaso, Natalina
AU - Cain, Sean
AU - Rodaros, Demetra
AU - Stewart, Jane
PY - 1999/10/1
Y1 - 1999/10/1
N2 - Changes in astrocytic function may underlie the neurochemical and morphological alterations in limbic and cortical areas after estrogen loss in adult females. We assessed whether increased expression of basic fibroblast growth factor (bFGF), an astrocytic response involved in injury-induced neuronal plasticity, occurs after ovariectomy. We examined bFGF immunoreactivity (IR) in ovariectomized rats with oil or estradiol benzoate (5 μg every 4 d; Experiment 1) and in ovariectomized and intact animals (Experiment 2). In the ventral tegmental area (VTA), bFGF-IR and glial fibrillary acidic protein (GFAP)-IR were greater in ovariectomized animals than in animals with estrogen replacement. bFGF-IR in the VTA was greater in ovariectomized than in intact females. In the dorsal raphe, no differences between groups were found in GFAP-IR or bFGF-IR. In mesolimbic dopaminergic target areas within entorhinal cortex (Ent), prefrontal cortex, and nucleus accumbens, bFGF-IR was higher in Ent of ovariectomized animals 4 weeks after surgery in both experiments, but no differences were seen in nucleus accumbens or in an occipital cortical, control, area in either study. In Experiment 2, small increases in bFGF-IR were seen in the prefrontal cortex after ovariectomy. In the VTA and Ent, changes in bFGF-IR developed gradually, peaking at 4 weeks and waning at 40 weeks, Furthermore, increased dendritic arbor of Ent layer II/III pyramidal cells was found in ovariectomized females with the use of a modified Golgi-Cox staining procedure. These findings suggest that, within specific regions, ovariectomy induces astrocytic responses similar to those observed after injury that may affect neuronal chemistry and morphology.
AB - Changes in astrocytic function may underlie the neurochemical and morphological alterations in limbic and cortical areas after estrogen loss in adult females. We assessed whether increased expression of basic fibroblast growth factor (bFGF), an astrocytic response involved in injury-induced neuronal plasticity, occurs after ovariectomy. We examined bFGF immunoreactivity (IR) in ovariectomized rats with oil or estradiol benzoate (5 μg every 4 d; Experiment 1) and in ovariectomized and intact animals (Experiment 2). In the ventral tegmental area (VTA), bFGF-IR and glial fibrillary acidic protein (GFAP)-IR were greater in ovariectomized animals than in animals with estrogen replacement. bFGF-IR in the VTA was greater in ovariectomized than in intact females. In the dorsal raphe, no differences between groups were found in GFAP-IR or bFGF-IR. In mesolimbic dopaminergic target areas within entorhinal cortex (Ent), prefrontal cortex, and nucleus accumbens, bFGF-IR was higher in Ent of ovariectomized animals 4 weeks after surgery in both experiments, but no differences were seen in nucleus accumbens or in an occipital cortical, control, area in either study. In Experiment 2, small increases in bFGF-IR were seen in the prefrontal cortex after ovariectomy. In the VTA and Ent, changes in bFGF-IR developed gradually, peaking at 4 weeks and waning at 40 weeks, Furthermore, increased dendritic arbor of Ent layer II/III pyramidal cells was found in ovariectomized females with the use of a modified Golgi-Cox staining procedure. These findings suggest that, within specific regions, ovariectomy induces astrocytic responses similar to those observed after injury that may affect neuronal chemistry and morphology.
KW - Astrocytes
KW - BFGF
KW - Dendritic arbor
KW - Entorhinal cortex
KW - Estrogen
KW - GFAP
KW - Golgi
KW - Prefrontal cortex
KW - Ventral tegmental area
UR - http://www.scopus.com/inward/record.url?scp=0033216112&partnerID=8YFLogxK
U2 - 10.1523/jneurosci.19-19-08665.1999
DO - 10.1523/jneurosci.19-19-08665.1999
M3 - Article
C2 - 10493767
AN - SCOPUS:0033216112
SN - 0270-6474
VL - 19
SP - 8665
EP - 8673
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 19
ER -