TY - JOUR
T1 - Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs
AU - Li, Li
AU - Maier, Holger
AU - Partington, Daniel
AU - Lambert, Martin
AU - Simmons, Craig
PY - 2014/4
Y1 - 2014/4
N2 - Recursive digital filters (RDFs) are one of the most commonly used methods of baseflow separation. However, how accurately they estimate baseflow and how to select appropriate values of filter parameters is generally unknown. In this paper, the output of fully integrated surface water/groundwater (SW/GW) models is used to obtain optimal parameters for, and assess the accuracy of, three commonly used RDFs under a range of physical catchment characteristics and hydrological inputs. The results indicate that the Lyne and Hollick (LH) filter performs better than the Boughton and Eckhardt filters, over a larger range of conditions. In addition, the optimal values of the filter parameters vary considerably for all three filters, depending on catchment characteristics and hydrological inputs. The dataset of the 66 catchment characteristics and hydrological inputs, as well as the corresponding simulated total streamflow and baseflow hydrographs obtained using the SW/GW model, can be downloaded as Supplementary material.
AB - Recursive digital filters (RDFs) are one of the most commonly used methods of baseflow separation. However, how accurately they estimate baseflow and how to select appropriate values of filter parameters is generally unknown. In this paper, the output of fully integrated surface water/groundwater (SW/GW) models is used to obtain optimal parameters for, and assess the accuracy of, three commonly used RDFs under a range of physical catchment characteristics and hydrological inputs. The results indicate that the Lyne and Hollick (LH) filter performs better than the Boughton and Eckhardt filters, over a larger range of conditions. In addition, the optimal values of the filter parameters vary considerably for all three filters, depending on catchment characteristics and hydrological inputs. The dataset of the 66 catchment characteristics and hydrological inputs, as well as the corresponding simulated total streamflow and baseflow hydrographs obtained using the SW/GW model, can be downloaded as Supplementary material.
KW - Baseflow
KW - Framework
KW - Prediction
KW - Recursive digital filters
KW - Regression models
UR - http://www.scopus.com/inward/record.url?scp=84892451933&partnerID=8YFLogxK
U2 - 10.1016/j.envsoft.2013.12.011
DO - 10.1016/j.envsoft.2013.12.011
M3 - Article
SN - 1364-8152
VL - 54
SP - 39
EP - 52
JO - Environmental Modelling and Software
JF - Environmental Modelling and Software
ER -