Photocatalytic degradation of methylene blue dye using catalyst based on the gold-containing clusters supported on TiO2

Siriluck Tesana, Gregory F. Metha, Gunther G. Andersson, Chris Ridings, Vladimir Golovko

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

The [Ru3(μ-AuPPh3)(μ-Cl)(CO)10] and [Au9(PPh3)8(NO3)3] clusters were synthesised according to well-established procedures and their identities were confirmed by NMR, IR, powder XRD, UV-vis and TGA techniques. Atomically precise Ru3Au cluster was then deposited on dried anatase TiO2 with the metal loading of 0.08, 0.17. 0.35, 0.50, 0.75, 1.00, 1.50, 2.00 and 5.0 wt%. The metal contents were confirmed by AAS and ICP-MS. The DR UV-vis spectra of the as-made catalyst indicated a successful deposition of the clusters on anatase which was also confirmed by the XPS results. However, the removal of protecting ligands via calcination resulted in agglomeration of clusters as revealed by XPS spectra. The photocatalytic performance in methylene blue dye degradation by the Ru3Au cluster immobilised on anatase was investigated under UV LED irradiation (λmax = 370 nm) and visible LED irradiation (λmax = 513 nm). Under UV irradiation, an increase in metal loading caused reduced dye conversion. This was due to the adsorbance of UV light by metal clusters which blocked the incident light onto anatase. The 5.0 wt% of metal loading showed the highest conversion due to the synergistic effects from larger surface plasmon resonance-active particles and surviving clusters (confirmed by XPS). The calcined and recycled catalysts exhibited significantly lower activity, most likely due to pronounced sintering of clusters. At 5.0 wt% of metal loading, the deposition of Ru3Au showed a superior performance in dye degradation as compared to pure Au9 cluster and Au colloid (~12 nm) under visible light.

Original languageEnglish
Pages (from-to)669-675
Number of pages7
JournalInternational Journal of Nanotechnology
Volume15
Issue number8-10
DOIs
Publication statusPublished - 2018

Bibliographical note

This paper is a revised and expanded version of a paper entitled ‘Photocatalytic degradation of methylene blue dye using catalyst based on the gold-containing clusters supported on TiO2’ presented at The 8th International Conference on Advanced Materials and Nanotechnology, Queenstown, New Zealand, 12–16 February, 2017.

Keywords

  • anatase
  • atomically precise
  • gold cluster
  • photocatalytic dye degradation
  • ruthenium-gold cluster

Fingerprint

Dive into the research topics of 'Photocatalytic degradation of methylene blue dye using catalyst based on the gold-containing clusters supported on TiO2'. Together they form a unique fingerprint.

Cite this