TY - JOUR
T1 - Post-fire succession affects abundance and survival but not detectability in a knob-tailed gecko
AU - Smith, Annabel
AU - Bull, Christopher
AU - Driscoll, Don
PY - 2012/1
Y1 - 2012/1
N2 - Altered fire regimes threaten the persistence of many animal species globally, thus understanding how fire affects demographic processes is critical for conservation. Using 2. years of mark-recapture data from the Australian gecko Nephrurus stellatus, we investigated the effect of fire on (i) detectability to reliably measure post-fire changes in abundance, and (ii) survival and reproductive rates to investigate the mechanisms of successional change. Data were collected from two conservation reserves each with three different fire categories based on time since the last fire "Early", "medium" and "late" sites had 2-3, 7-9 and 42-48. years since fire, respectively. A robust design modelling framework was used to estimate the effect of fire category on abundance, survival and capture probability while also examining the influence of temperature and behaviour on detectability. Geckos showed trap-shy behaviour and detectability increased significantly with increasing temperature but was not affected by time since fire. Accounting for detectability, geckos were more abundant in the medium than the early sites, and were rare in the late sites. Although trends in survival are more difficult to address with short-term data, our results showed lower monthly survival rates, but higher fecundity in the early than the medium sites. These results were possibly related to successional changes in predation, the thermal environment, and food availability. We demonstrated how mark-recapture analysis can show the causes of animal fire responses while realistically accounting for detectability. Such information is necessary to provide a predictive framework to guide fire management for biodiversity.
AB - Altered fire regimes threaten the persistence of many animal species globally, thus understanding how fire affects demographic processes is critical for conservation. Using 2. years of mark-recapture data from the Australian gecko Nephrurus stellatus, we investigated the effect of fire on (i) detectability to reliably measure post-fire changes in abundance, and (ii) survival and reproductive rates to investigate the mechanisms of successional change. Data were collected from two conservation reserves each with three different fire categories based on time since the last fire "Early", "medium" and "late" sites had 2-3, 7-9 and 42-48. years since fire, respectively. A robust design modelling framework was used to estimate the effect of fire category on abundance, survival and capture probability while also examining the influence of temperature and behaviour on detectability. Geckos showed trap-shy behaviour and detectability increased significantly with increasing temperature but was not affected by time since fire. Accounting for detectability, geckos were more abundant in the medium than the early sites, and were rare in the late sites. Although trends in survival are more difficult to address with short-term data, our results showed lower monthly survival rates, but higher fecundity in the early than the medium sites. These results were possibly related to successional changes in predation, the thermal environment, and food availability. We demonstrated how mark-recapture analysis can show the causes of animal fire responses while realistically accounting for detectability. Such information is necessary to provide a predictive framework to guide fire management for biodiversity.
KW - Animal demography
KW - Fire regime
KW - Mark-recapture
KW - Reproduction
KW - Reptile
KW - Robust design
UR - http://www.scopus.com/inward/record.url?scp=84856218852&partnerID=8YFLogxK
U2 - 10.1016/j.biocon.2011.10.023
DO - 10.1016/j.biocon.2011.10.023
M3 - Article
SN - 0006-3207
VL - 145
SP - 139
EP - 147
JO - Biological Conservation
JF - Biological Conservation
IS - 1
ER -